Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme50f1 Structured version   Visualization version   GIF version

Theorem cdleme50f1 40486
Description: Part of proof of Lemma D in [Crawley] p. 113. TODO: fix comment. (Contributed by NM, 9-Apr-2013.)
Hypotheses
Ref Expression
cdlemef50.b 𝐵 = (Base‘𝐾)
cdlemef50.l = (le‘𝐾)
cdlemef50.j = (join‘𝐾)
cdlemef50.m = (meet‘𝐾)
cdlemef50.a 𝐴 = (Atoms‘𝐾)
cdlemef50.h 𝐻 = (LHyp‘𝐾)
cdlemef50.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdlemef50.d 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdlemefs50.e 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
cdlemef50.f 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))
Assertion
Ref Expression
cdleme50f1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹:𝐵1-1𝐵)
Distinct variable groups:   𝑡,𝑠,𝑥,𝑦,𝑧,   ,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝐴,𝑠,𝑡,𝑥,𝑦,𝑧   𝐵,𝑠,𝑡,𝑥,𝑦,𝑧   𝐷,𝑠,𝑥,𝑦,𝑧   𝑥,𝐸,𝑦,𝑧   𝐻,𝑠,𝑡,𝑥,𝑦,𝑧   𝐾,𝑠,𝑡,𝑥,𝑦,𝑧   𝑃,𝑠,𝑡,𝑥,𝑦,𝑧   𝑄,𝑠,𝑡,𝑥,𝑦,𝑧   𝑈,𝑠,𝑡,𝑥,𝑦,𝑧   𝑊,𝑠,𝑡,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐷(𝑡)   𝐸(𝑡,𝑠)   𝐹(𝑥,𝑦,𝑧,𝑡,𝑠)

Proof of Theorem cdleme50f1
Dummy variables 𝑒 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdlemef50.b . . 3 𝐵 = (Base‘𝐾)
2 cdlemef50.l . . 3 = (le‘𝐾)
3 cdlemef50.j . . 3 = (join‘𝐾)
4 cdlemef50.m . . 3 = (meet‘𝐾)
5 cdlemef50.a . . 3 𝐴 = (Atoms‘𝐾)
6 cdlemef50.h . . 3 𝐻 = (LHyp‘𝐾)
7 cdlemef50.u . . 3 𝑈 = ((𝑃 𝑄) 𝑊)
8 cdlemef50.d . . 3 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
9 cdlemefs50.e . . 3 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
10 cdlemef50.f . . 3 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10cdleme50f 40485 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹:𝐵𝐵)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10cdleme50eq 40484 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑑𝐵𝑒𝐵)) → ((𝐹𝑑) = (𝐹𝑒) ↔ 𝑑 = 𝑒))
1312biimpd 229 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑑𝐵𝑒𝐵)) → ((𝐹𝑑) = (𝐹𝑒) → 𝑑 = 𝑒))
1413ralrimivva 3189 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ∀𝑑𝐵𝑒𝐵 ((𝐹𝑑) = (𝐹𝑒) → 𝑑 = 𝑒))
15 dff13 7258 . 2 (𝐹:𝐵1-1𝐵 ↔ (𝐹:𝐵𝐵 ∧ ∀𝑑𝐵𝑒𝐵 ((𝐹𝑑) = (𝐹𝑒) → 𝑑 = 𝑒)))
1611, 14, 15sylanbrc 583 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹:𝐵1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wral 3050  csb 3881  ifcif 4507   class class class wbr 5125  cmpt 5207  wf 6538  1-1wf1 6539  cfv 6542  crio 7370  (class class class)co 7414  Basecbs 17230  lecple 17284  joincjn 18332  meetcmee 18333  Atomscatm 39205  HLchlt 39292  LHypclh 39927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-riotaBAD 38895
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-iin 4976  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7997  df-2nd 7998  df-undef 8281  df-proset 18315  df-poset 18334  df-plt 18349  df-lub 18365  df-glb 18366  df-join 18367  df-meet 18368  df-p0 18444  df-p1 18445  df-lat 18451  df-clat 18518  df-oposet 39118  df-ol 39120  df-oml 39121  df-covers 39208  df-ats 39209  df-atl 39240  df-cvlat 39264  df-hlat 39293  df-llines 39441  df-lplanes 39442  df-lvols 39443  df-lines 39444  df-psubsp 39446  df-pmap 39447  df-padd 39739  df-lhyp 39931
This theorem is referenced by:  cdleme50f1o  40489
  Copyright terms: Public domain W3C validator