![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemefs32snb | Structured version Visualization version GIF version |
Description: Show closure of ⦋𝑅 / 𝑠⦌𝑁. (Contributed by NM, 24-Mar-2013.) |
Ref | Expression |
---|---|
cdlemefs32.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemefs32.l | ⊢ ≤ = (le‘𝐾) |
cdlemefs32.j | ⊢ ∨ = (join‘𝐾) |
cdlemefs32.m | ⊢ ∧ = (meet‘𝐾) |
cdlemefs32.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemefs32.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemefs32.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
cdlemefs32.d | ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
cdlemefs32.e | ⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
cdlemefs32.i | ⊢ 𝐼 = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)) |
cdlemefs32.n | ⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐶) |
Ref | Expression |
---|---|
cdlemefs32snb | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ⦋𝑅 / 𝑠⦌𝑁 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemefs32.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | cdlemefs32.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | cdlemefs32.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
4 | cdlemefs32.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
5 | cdlemefs32.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | cdlemefs32.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | cdlemefs32.u | . . . 4 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
8 | cdlemefs32.d | . . . 4 ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) | |
9 | cdlemefs32.e | . . . 4 ⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) | |
10 | cdlemefs32.i | . . . 4 ⊢ 𝐼 = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)) | |
11 | cdlemefs32.n | . . . 4 ⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐶) | |
12 | eqid 2733 | . . . 4 ⊢ ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑅 ∨ 𝑡) ∧ 𝑊))) = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑅 ∨ 𝑡) ∧ 𝑊))) | |
13 | eqid 2733 | . . . 4 ⊢ (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑅 ∨ 𝑡) ∧ 𝑊))))) = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑅 ∨ 𝑡) ∧ 𝑊))))) | |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | cdlemefs32sn1aw 39191 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (⦋𝑅 / 𝑠⦌𝑁 ∈ 𝐴 ∧ ¬ ⦋𝑅 / 𝑠⦌𝑁 ≤ 𝑊)) |
15 | 14 | simpld 496 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ⦋𝑅 / 𝑠⦌𝑁 ∈ 𝐴) |
16 | 1, 5 | atbase 38065 | . 2 ⊢ (⦋𝑅 / 𝑠⦌𝑁 ∈ 𝐴 → ⦋𝑅 / 𝑠⦌𝑁 ∈ 𝐵) |
17 | 15, 16 | syl 17 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ⦋𝑅 / 𝑠⦌𝑁 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∀wral 3062 ⦋csb 3891 ifcif 4524 class class class wbr 5144 ‘cfv 6535 ℩crio 7351 (class class class)co 7396 Basecbs 17131 lecple 17191 joincjn 18251 meetcmee 18252 Atomscatm 38039 HLchlt 38126 LHypclh 38761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 ax-riotaBAD 37729 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-iun 4995 df-iin 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-riota 7352 df-ov 7399 df-oprab 7400 df-mpo 7401 df-1st 7962 df-2nd 7963 df-undef 8245 df-proset 18235 df-poset 18253 df-plt 18270 df-lub 18286 df-glb 18287 df-join 18288 df-meet 18289 df-p0 18365 df-p1 18366 df-lat 18372 df-clat 18439 df-oposet 37952 df-ol 37954 df-oml 37955 df-covers 38042 df-ats 38043 df-atl 38074 df-cvlat 38098 df-hlat 38127 df-llines 38275 df-lplanes 38276 df-lvols 38277 df-lines 38278 df-psubsp 38280 df-pmap 38281 df-padd 38573 df-lhyp 38765 |
This theorem is referenced by: cdlemefs29bpre1N 39194 cdlemefs29cpre1N 39195 cdlemefs29clN 39196 cdlemefs32fvaN 39199 cdlemefs32fva1 39200 |
Copyright terms: Public domain | W3C validator |