![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemefs32snb | Structured version Visualization version GIF version |
Description: Show closure of ⦋𝑅 / 𝑠⦌𝑁. (Contributed by NM, 24-Mar-2013.) |
Ref | Expression |
---|---|
cdlemefs32.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemefs32.l | ⊢ ≤ = (le‘𝐾) |
cdlemefs32.j | ⊢ ∨ = (join‘𝐾) |
cdlemefs32.m | ⊢ ∧ = (meet‘𝐾) |
cdlemefs32.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemefs32.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemefs32.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
cdlemefs32.d | ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
cdlemefs32.e | ⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
cdlemefs32.i | ⊢ 𝐼 = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)) |
cdlemefs32.n | ⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐶) |
Ref | Expression |
---|---|
cdlemefs32snb | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ⦋𝑅 / 𝑠⦌𝑁 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemefs32.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | cdlemefs32.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | cdlemefs32.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
4 | cdlemefs32.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
5 | cdlemefs32.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | cdlemefs32.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | cdlemefs32.u | . . . 4 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
8 | cdlemefs32.d | . . . 4 ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) | |
9 | cdlemefs32.e | . . . 4 ⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) | |
10 | cdlemefs32.i | . . . 4 ⊢ 𝐼 = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)) | |
11 | cdlemefs32.n | . . . 4 ⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐶) | |
12 | eqid 2800 | . . . 4 ⊢ ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑅 ∨ 𝑡) ∧ 𝑊))) = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑅 ∨ 𝑡) ∧ 𝑊))) | |
13 | eqid 2800 | . . . 4 ⊢ (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑅 ∨ 𝑡) ∧ 𝑊))))) = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑅 ∨ 𝑡) ∧ 𝑊))))) | |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | cdlemefs32sn1aw 36434 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (⦋𝑅 / 𝑠⦌𝑁 ∈ 𝐴 ∧ ¬ ⦋𝑅 / 𝑠⦌𝑁 ≤ 𝑊)) |
15 | 14 | simpld 489 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ⦋𝑅 / 𝑠⦌𝑁 ∈ 𝐴) |
16 | 1, 5 | atbase 35309 | . 2 ⊢ (⦋𝑅 / 𝑠⦌𝑁 ∈ 𝐴 → ⦋𝑅 / 𝑠⦌𝑁 ∈ 𝐵) |
17 | 15, 16 | syl 17 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ⦋𝑅 / 𝑠⦌𝑁 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ≠ wne 2972 ∀wral 3090 ⦋csb 3729 ifcif 4278 class class class wbr 4844 ‘cfv 6102 ℩crio 6839 (class class class)co 6879 Basecbs 16183 lecple 16273 joincjn 17258 meetcmee 17259 Atomscatm 35283 HLchlt 35370 LHypclh 36004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-riotaBAD 34973 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-iun 4713 df-iin 4714 df-br 4845 df-opab 4907 df-mpt 4924 df-id 5221 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-1st 7402 df-2nd 7403 df-undef 7638 df-proset 17242 df-poset 17260 df-plt 17272 df-lub 17288 df-glb 17289 df-join 17290 df-meet 17291 df-p0 17353 df-p1 17354 df-lat 17360 df-clat 17422 df-oposet 35196 df-ol 35198 df-oml 35199 df-covers 35286 df-ats 35287 df-atl 35318 df-cvlat 35342 df-hlat 35371 df-llines 35518 df-lplanes 35519 df-lvols 35520 df-lines 35521 df-psubsp 35523 df-pmap 35524 df-padd 35816 df-lhyp 36008 |
This theorem is referenced by: cdlemefs29bpre1N 36437 cdlemefs29cpre1N 36438 cdlemefs29clN 36439 cdlemefs32fvaN 36442 cdlemefs32fva1 36443 |
Copyright terms: Public domain | W3C validator |