![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemk11tb | Structured version Visualization version GIF version |
Description: Part of proof of Lemma K of [Crawley] p. 118. Lemma for Eq. 5, p. 119. 𝐺, 𝐼 stand for g, h. cdlemk11ta 36999 with hypotheses removed. TODO: Can this be proved directly with no quantification? (Contributed by NM, 21-Jul-2013.) |
Ref | Expression |
---|---|
cdlemk5.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemk5.l | ⊢ ≤ = (le‘𝐾) |
cdlemk5.j | ⊢ ∨ = (join‘𝐾) |
cdlemk5.m | ⊢ ∧ = (meet‘𝐾) |
cdlemk5.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemk5.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemk5.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemk5.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
cdlemk5.z | ⊢ 𝑍 = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) |
cdlemk5.y | ⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) |
Ref | Expression |
---|---|
cdlemk11tb | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐼)))) → ⦋𝐺 / 𝑔⦌𝑌 ≤ (⦋𝐼 / 𝑔⦌𝑌 ∨ (𝑅‘(𝐼 ∘ ◡𝐺)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemk5.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | cdlemk5.l | . 2 ⊢ ≤ = (le‘𝐾) | |
3 | cdlemk5.j | . 2 ⊢ ∨ = (join‘𝐾) | |
4 | cdlemk5.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
5 | cdlemk5.a | . 2 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | cdlemk5.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | cdlemk5.t | . 2 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
8 | cdlemk5.r | . 2 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
9 | cdlemk5.z | . 2 ⊢ 𝑍 = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) | |
10 | cdlemk5.y | . 2 ⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) | |
11 | eqid 2825 | . 2 ⊢ (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) | |
12 | eqid 2825 | . 2 ⊢ (𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ ((((𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹))))))‘𝑏)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝑏)))))) = (𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ ((((𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹))))))‘𝑏)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝑏)))))) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | cdlemk11ta 36999 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝑏 ∈ 𝑇 ∧ (𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐺)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐼)))) → ⦋𝐺 / 𝑔⦌𝑌 ≤ (⦋𝐼 / 𝑔⦌𝑌 ∨ (𝑅‘(𝐼 ∘ ◡𝐺)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 ≠ wne 2999 ⦋csb 3757 class class class wbr 4875 ↦ cmpt 4954 I cid 5251 ◡ccnv 5345 ↾ cres 5348 ∘ ccom 5350 ‘cfv 6127 ℩crio 6870 (class class class)co 6910 Basecbs 16229 lecple 16319 joincjn 17304 meetcmee 17305 Atomscatm 35333 HLchlt 35420 LHypclh 36054 LTrncltrn 36171 trLctrl 36228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-riotaBAD 35023 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-iin 4745 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-1st 7433 df-2nd 7434 df-undef 7669 df-map 8129 df-proset 17288 df-poset 17306 df-plt 17318 df-lub 17334 df-glb 17335 df-join 17336 df-meet 17337 df-p0 17399 df-p1 17400 df-lat 17406 df-clat 17468 df-oposet 35246 df-ol 35248 df-oml 35249 df-covers 35336 df-ats 35337 df-atl 35368 df-cvlat 35392 df-hlat 35421 df-llines 35568 df-lplanes 35569 df-lvols 35570 df-lines 35571 df-psubsp 35573 df-pmap 35574 df-padd 35866 df-lhyp 36058 df-laut 36059 df-ldil 36174 df-ltrn 36175 df-trl 36229 |
This theorem is referenced by: cdlemk11tc 37015 |
Copyright terms: Public domain | W3C validator |