| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2oppccomf | Structured version Visualization version GIF version | ||
| Description: The double opposite category has the same composition as the original category. Intended for use with property lemmas such as monpropd 17699. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| oppcbas.1 | ⊢ 𝑂 = (oppCat‘𝐶) |
| Ref | Expression |
|---|---|
| 2oppccomf | ⊢ (compf‘𝐶) = (compf‘(oppCat‘𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcbas.1 | . . . . . . . . 9 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 2 | eqid 2729 | . . . . . . . . 9 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 3 | 1, 2 | oppcbas 17679 | . . . . . . . 8 ⊢ (Base‘𝐶) = (Base‘𝑂) |
| 4 | eqid 2729 | . . . . . . . 8 ⊢ (comp‘𝑂) = (comp‘𝑂) | |
| 5 | eqid 2729 | . . . . . . . 8 ⊢ (oppCat‘𝑂) = (oppCat‘𝑂) | |
| 6 | simpr1 1195 | . . . . . . . 8 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶)) | |
| 7 | simpr2 1196 | . . . . . . . 8 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶)) | |
| 8 | simpr3 1197 | . . . . . . . 8 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑧 ∈ (Base‘𝐶)) | |
| 9 | 3, 4, 5, 6, 7, 8 | oppcco 17678 | . . . . . . 7 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝑂))𝑧)𝑓) = (𝑓(〈𝑧, 𝑦〉(comp‘𝑂)𝑥)𝑔)) |
| 10 | eqid 2729 | . . . . . . . 8 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 11 | 2, 10, 1, 8, 7, 6 | oppcco 17678 | . . . . . . 7 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑓(〈𝑧, 𝑦〉(comp‘𝑂)𝑥)𝑔) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) |
| 12 | 9, 11 | eqtr2d 2765 | . . . . . 6 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝑂))𝑧)𝑓)) |
| 13 | 12 | ralrimivw 3129 | . . . . 5 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝑂))𝑧)𝑓)) |
| 14 | 13 | ralrimivw 3129 | . . . 4 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝑂))𝑧)𝑓)) |
| 15 | 14 | ralrimivvva 3183 | . . 3 ⊢ (⊤ → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝑂))𝑧)𝑓)) |
| 16 | eqid 2729 | . . . 4 ⊢ (comp‘(oppCat‘𝑂)) = (comp‘(oppCat‘𝑂)) | |
| 17 | eqid 2729 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 18 | eqidd 2730 | . . . 4 ⊢ (⊤ → (Base‘𝐶) = (Base‘𝐶)) | |
| 19 | 1, 2 | 2oppcbas 17684 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘(oppCat‘𝑂)) |
| 20 | 19 | a1i 11 | . . . 4 ⊢ (⊤ → (Base‘𝐶) = (Base‘(oppCat‘𝑂))) |
| 21 | 1 | 2oppchomf 17685 | . . . . 5 ⊢ (Homf ‘𝐶) = (Homf ‘(oppCat‘𝑂)) |
| 22 | 21 | a1i 11 | . . . 4 ⊢ (⊤ → (Homf ‘𝐶) = (Homf ‘(oppCat‘𝑂))) |
| 23 | 10, 16, 17, 18, 20, 22 | comfeq 17667 | . . 3 ⊢ (⊤ → ((compf‘𝐶) = (compf‘(oppCat‘𝑂)) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝑂))𝑧)𝑓))) |
| 24 | 15, 23 | mpbird 257 | . 2 ⊢ (⊤ → (compf‘𝐶) = (compf‘(oppCat‘𝑂))) |
| 25 | 24 | mptru 1547 | 1 ⊢ (compf‘𝐶) = (compf‘(oppCat‘𝑂)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ∀wral 3044 〈cop 4595 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 Hom chom 17231 compcco 17232 Homf chomf 17627 compfccomf 17628 oppCatcoppc 17672 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-hom 17244 df-cco 17245 df-homf 17631 df-comf 17632 df-oppc 17673 |
| This theorem is referenced by: oppcepi 17701 oppchofcl 18221 oppcyon 18230 oyoncl 18231 oppccatb 49005 oppccicb 49040 funcoppc2 49132 natoppfb 49220 cmddu 49657 termolmd 49659 |
| Copyright terms: Public domain | W3C validator |