MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2oppccomf Structured version   Visualization version   GIF version

Theorem 2oppccomf 17604
Description: The double opposite category has the same composition as the original category. Intended for use with property lemmas such as monpropd 17617. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypothesis
Ref Expression
oppcbas.1 𝑂 = (oppCat‘𝐶)
Assertion
Ref Expression
2oppccomf (compf𝐶) = (compf‘(oppCat‘𝑂))

Proof of Theorem 2oppccomf
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppcbas.1 . . . . . . . . 9 𝑂 = (oppCat‘𝐶)
2 eqid 2736 . . . . . . . . 9 (Base‘𝐶) = (Base‘𝐶)
31, 2oppcbas 17596 . . . . . . . 8 (Base‘𝐶) = (Base‘𝑂)
4 eqid 2736 . . . . . . . 8 (comp‘𝑂) = (comp‘𝑂)
5 eqid 2736 . . . . . . . 8 (oppCat‘𝑂) = (oppCat‘𝑂)
6 simpr1 1194 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
7 simpr2 1195 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
8 simpr3 1196 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑧 ∈ (Base‘𝐶))
93, 4, 5, 6, 7, 8oppcco 17595 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝑂))𝑧)𝑓) = (𝑓(⟨𝑧, 𝑦⟩(comp‘𝑂)𝑥)𝑔))
10 eqid 2736 . . . . . . . 8 (comp‘𝐶) = (comp‘𝐶)
112, 10, 1, 8, 7, 6oppcco 17595 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑓(⟨𝑧, 𝑦⟩(comp‘𝑂)𝑥)𝑔) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))
129, 11eqtr2d 2777 . . . . . 6 ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝑂))𝑧)𝑓))
1312ralrimivw 3146 . . . . 5 ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝑂))𝑧)𝑓))
1413ralrimivw 3146 . . . 4 ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝑂))𝑧)𝑓))
1514ralrimivvva 3199 . . 3 (⊤ → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝑂))𝑧)𝑓))
16 eqid 2736 . . . 4 (comp‘(oppCat‘𝑂)) = (comp‘(oppCat‘𝑂))
17 eqid 2736 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
18 eqidd 2737 . . . 4 (⊤ → (Base‘𝐶) = (Base‘𝐶))
191, 22oppcbas 17602 . . . . 5 (Base‘𝐶) = (Base‘(oppCat‘𝑂))
2019a1i 11 . . . 4 (⊤ → (Base‘𝐶) = (Base‘(oppCat‘𝑂)))
2112oppchomf 17603 . . . . 5 (Homf𝐶) = (Homf ‘(oppCat‘𝑂))
2221a1i 11 . . . 4 (⊤ → (Homf𝐶) = (Homf ‘(oppCat‘𝑂)))
2310, 16, 17, 18, 20, 22comfeq 17583 . . 3 (⊤ → ((compf𝐶) = (compf‘(oppCat‘𝑂)) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘(oppCat‘𝑂))𝑧)𝑓)))
2415, 23mpbird 256 . 2 (⊤ → (compf𝐶) = (compf‘(oppCat‘𝑂)))
2524mptru 1548 1 (compf𝐶) = (compf‘(oppCat‘𝑂))
Colors of variables: wff setvar class
Syntax hints:  wa 396  w3a 1087   = wceq 1541  wtru 1542  wcel 2106  wral 3063  cop 4591  cfv 6494  (class class class)co 7354  Basecbs 17080  Hom chom 17141  compcco 17142  Homf chomf 17543  compfccomf 17544  oppCatcoppc 17588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7669  ax-cnex 11104  ax-resscn 11105  ax-1cn 11106  ax-icn 11107  ax-addcl 11108  ax-addrcl 11109  ax-mulcl 11110  ax-mulrcl 11111  ax-mulcom 11112  ax-addass 11113  ax-mulass 11114  ax-distr 11115  ax-i2m1 11116  ax-1ne0 11117  ax-1rid 11118  ax-rnegex 11119  ax-rrecex 11120  ax-cnre 11121  ax-pre-lttri 11122  ax-pre-lttrn 11123  ax-pre-ltadd 11124  ax-pre-mulgt0 11125
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5530  df-eprel 5536  df-po 5544  df-so 5545  df-fr 5587  df-we 5589  df-xp 5638  df-rel 5639  df-cnv 5640  df-co 5641  df-dm 5642  df-rn 5643  df-res 5644  df-ima 5645  df-pred 6252  df-ord 6319  df-on 6320  df-lim 6321  df-suc 6322  df-iota 6446  df-fun 6496  df-fn 6497  df-f 6498  df-f1 6499  df-fo 6500  df-f1o 6501  df-fv 6502  df-riota 7310  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7800  df-1st 7918  df-2nd 7919  df-tpos 8154  df-frecs 8209  df-wrecs 8240  df-recs 8314  df-rdg 8353  df-er 8645  df-en 8881  df-dom 8882  df-sdom 8883  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11384  df-neg 11385  df-nn 12151  df-2 12213  df-3 12214  df-4 12215  df-5 12216  df-6 12217  df-7 12218  df-8 12219  df-9 12220  df-n0 12411  df-z 12497  df-dec 12616  df-sets 17033  df-slot 17051  df-ndx 17063  df-base 17081  df-hom 17154  df-cco 17155  df-homf 17547  df-comf 17548  df-oppc 17589
This theorem is referenced by:  oppcepi  17619  oppchofcl  18146  oppcyon  18155  oyoncl  18156
  Copyright terms: Public domain W3C validator