| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2oppccomf | Structured version Visualization version GIF version | ||
| Description: The double opposite category has the same composition as the original category. Intended for use with property lemmas such as monpropd 17646. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| oppcbas.1 | ⊢ 𝑂 = (oppCat‘𝐶) |
| Ref | Expression |
|---|---|
| 2oppccomf | ⊢ (compf‘𝐶) = (compf‘(oppCat‘𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcbas.1 | . . . . . . . . 9 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 2 | eqid 2733 | . . . . . . . . 9 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 3 | 1, 2 | oppcbas 17626 | . . . . . . . 8 ⊢ (Base‘𝐶) = (Base‘𝑂) |
| 4 | eqid 2733 | . . . . . . . 8 ⊢ (comp‘𝑂) = (comp‘𝑂) | |
| 5 | eqid 2733 | . . . . . . . 8 ⊢ (oppCat‘𝑂) = (oppCat‘𝑂) | |
| 6 | simpr1 1195 | . . . . . . . 8 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶)) | |
| 7 | simpr2 1196 | . . . . . . . 8 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶)) | |
| 8 | simpr3 1197 | . . . . . . . 8 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑧 ∈ (Base‘𝐶)) | |
| 9 | 3, 4, 5, 6, 7, 8 | oppcco 17625 | . . . . . . 7 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝑂))𝑧)𝑓) = (𝑓(〈𝑧, 𝑦〉(comp‘𝑂)𝑥)𝑔)) |
| 10 | eqid 2733 | . . . . . . . 8 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 11 | 2, 10, 1, 8, 7, 6 | oppcco 17625 | . . . . . . 7 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑓(〈𝑧, 𝑦〉(comp‘𝑂)𝑥)𝑔) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) |
| 12 | 9, 11 | eqtr2d 2769 | . . . . . 6 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝑂))𝑧)𝑓)) |
| 13 | 12 | ralrimivw 3129 | . . . . 5 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝑂))𝑧)𝑓)) |
| 14 | 13 | ralrimivw 3129 | . . . 4 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝑂))𝑧)𝑓)) |
| 15 | 14 | ralrimivvva 3179 | . . 3 ⊢ (⊤ → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝑂))𝑧)𝑓)) |
| 16 | eqid 2733 | . . . 4 ⊢ (comp‘(oppCat‘𝑂)) = (comp‘(oppCat‘𝑂)) | |
| 17 | eqid 2733 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 18 | eqidd 2734 | . . . 4 ⊢ (⊤ → (Base‘𝐶) = (Base‘𝐶)) | |
| 19 | 1, 2 | 2oppcbas 17631 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘(oppCat‘𝑂)) |
| 20 | 19 | a1i 11 | . . . 4 ⊢ (⊤ → (Base‘𝐶) = (Base‘(oppCat‘𝑂))) |
| 21 | 1 | 2oppchomf 17632 | . . . . 5 ⊢ (Homf ‘𝐶) = (Homf ‘(oppCat‘𝑂)) |
| 22 | 21 | a1i 11 | . . . 4 ⊢ (⊤ → (Homf ‘𝐶) = (Homf ‘(oppCat‘𝑂))) |
| 23 | 10, 16, 17, 18, 20, 22 | comfeq 17614 | . . 3 ⊢ (⊤ → ((compf‘𝐶) = (compf‘(oppCat‘𝑂)) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝑂))𝑧)𝑓))) |
| 24 | 15, 23 | mpbird 257 | . 2 ⊢ (⊤ → (compf‘𝐶) = (compf‘(oppCat‘𝑂))) |
| 25 | 24 | mptru 1548 | 1 ⊢ (compf‘𝐶) = (compf‘(oppCat‘𝑂)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1541 ⊤wtru 1542 ∈ wcel 2113 ∀wral 3048 〈cop 4581 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 Hom chom 17174 compcco 17175 Homf chomf 17574 compfccomf 17575 oppCatcoppc 17619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-hom 17187 df-cco 17188 df-homf 17578 df-comf 17579 df-oppc 17620 |
| This theorem is referenced by: oppcepi 17648 oppchofcl 18168 oppcyon 18177 oyoncl 18178 oppccatb 49141 oppccicb 49176 funcoppc2 49268 natoppfb 49356 cmddu 49793 termolmd 49795 |
| Copyright terms: Public domain | W3C validator |