Step | Hyp | Ref
| Expression |
1 | | oppcbas.1 |
. . . . . . . . 9
β’ π = (oppCatβπΆ) |
2 | | eqid 2731 |
. . . . . . . . 9
β’
(BaseβπΆ) =
(BaseβπΆ) |
3 | 1, 2 | oppcbas 17668 |
. . . . . . . 8
β’
(BaseβπΆ) =
(Baseβπ) |
4 | | eqid 2731 |
. . . . . . . 8
β’
(compβπ) =
(compβπ) |
5 | | eqid 2731 |
. . . . . . . 8
β’
(oppCatβπ) =
(oppCatβπ) |
6 | | simpr1 1193 |
. . . . . . . 8
β’
((β€ β§ (π₯
β (BaseβπΆ) β§
π¦ β (BaseβπΆ) β§ π§ β (BaseβπΆ))) β π₯ β (BaseβπΆ)) |
7 | | simpr2 1194 |
. . . . . . . 8
β’
((β€ β§ (π₯
β (BaseβπΆ) β§
π¦ β (BaseβπΆ) β§ π§ β (BaseβπΆ))) β π¦ β (BaseβπΆ)) |
8 | | simpr3 1195 |
. . . . . . . 8
β’
((β€ β§ (π₯
β (BaseβπΆ) β§
π¦ β (BaseβπΆ) β§ π§ β (BaseβπΆ))) β π§ β (BaseβπΆ)) |
9 | 3, 4, 5, 6, 7, 8 | oppcco 17667 |
. . . . . . 7
β’
((β€ β§ (π₯
β (BaseβπΆ) β§
π¦ β (BaseβπΆ) β§ π§ β (BaseβπΆ))) β (π(β¨π₯, π¦β©(compβ(oppCatβπ))π§)π) = (π(β¨π§, π¦β©(compβπ)π₯)π)) |
10 | | eqid 2731 |
. . . . . . . 8
β’
(compβπΆ) =
(compβπΆ) |
11 | 2, 10, 1, 8, 7, 6 | oppcco 17667 |
. . . . . . 7
β’
((β€ β§ (π₯
β (BaseβπΆ) β§
π¦ β (BaseβπΆ) β§ π§ β (BaseβπΆ))) β (π(β¨π§, π¦β©(compβπ)π₯)π) = (π(β¨π₯, π¦β©(compβπΆ)π§)π)) |
12 | 9, 11 | eqtr2d 2772 |
. . . . . 6
β’
((β€ β§ (π₯
β (BaseβπΆ) β§
π¦ β (BaseβπΆ) β§ π§ β (BaseβπΆ))) β (π(β¨π₯, π¦β©(compβπΆ)π§)π) = (π(β¨π₯, π¦β©(compβ(oppCatβπ))π§)π)) |
13 | 12 | ralrimivw 3149 |
. . . . 5
β’
((β€ β§ (π₯
β (BaseβπΆ) β§
π¦ β (BaseβπΆ) β§ π§ β (BaseβπΆ))) β βπ β (π¦(Hom βπΆ)π§)(π(β¨π₯, π¦β©(compβπΆ)π§)π) = (π(β¨π₯, π¦β©(compβ(oppCatβπ))π§)π)) |
14 | 13 | ralrimivw 3149 |
. . . 4
β’
((β€ β§ (π₯
β (BaseβπΆ) β§
π¦ β (BaseβπΆ) β§ π§ β (BaseβπΆ))) β βπ β (π₯(Hom βπΆ)π¦)βπ β (π¦(Hom βπΆ)π§)(π(β¨π₯, π¦β©(compβπΆ)π§)π) = (π(β¨π₯, π¦β©(compβ(oppCatβπ))π§)π)) |
15 | 14 | ralrimivvva 3202 |
. . 3
β’ (β€
β βπ₯ β
(BaseβπΆ)βπ¦ β (BaseβπΆ)βπ§ β (BaseβπΆ)βπ β (π₯(Hom βπΆ)π¦)βπ β (π¦(Hom βπΆ)π§)(π(β¨π₯, π¦β©(compβπΆ)π§)π) = (π(β¨π₯, π¦β©(compβ(oppCatβπ))π§)π)) |
16 | | eqid 2731 |
. . . 4
β’
(compβ(oppCatβπ)) = (compβ(oppCatβπ)) |
17 | | eqid 2731 |
. . . 4
β’ (Hom
βπΆ) = (Hom
βπΆ) |
18 | | eqidd 2732 |
. . . 4
β’ (β€
β (BaseβπΆ) =
(BaseβπΆ)) |
19 | 1, 2 | 2oppcbas 17674 |
. . . . 5
β’
(BaseβπΆ) =
(Baseβ(oppCatβπ)) |
20 | 19 | a1i 11 |
. . . 4
β’ (β€
β (BaseβπΆ) =
(Baseβ(oppCatβπ))) |
21 | 1 | 2oppchomf 17675 |
. . . . 5
β’
(Homf βπΆ) = (Homf
β(oppCatβπ)) |
22 | 21 | a1i 11 |
. . . 4
β’ (β€
β (Homf βπΆ) = (Homf
β(oppCatβπ))) |
23 | 10, 16, 17, 18, 20, 22 | comfeq 17655 |
. . 3
β’ (β€
β ((compfβπΆ) =
(compfβ(oppCatβπ)) β βπ₯ β (BaseβπΆ)βπ¦ β (BaseβπΆ)βπ§ β (BaseβπΆ)βπ β (π₯(Hom βπΆ)π¦)βπ β (π¦(Hom βπΆ)π§)(π(β¨π₯, π¦β©(compβπΆ)π§)π) = (π(β¨π₯, π¦β©(compβ(oppCatβπ))π§)π))) |
24 | 15, 23 | mpbird 256 |
. 2
β’ (β€
β (compfβπΆ) =
(compfβ(oppCatβπ))) |
25 | 24 | mptru 1547 |
1
β’
(compfβπΆ) =
(compfβ(oppCatβπ)) |