|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 2oppccomf | Structured version Visualization version GIF version | ||
| Description: The double opposite category has the same composition as the original category. Intended for use with property lemmas such as monpropd 17781. (Contributed by Mario Carneiro, 3-Jan-2017.) | 
| Ref | Expression | 
|---|---|
| oppcbas.1 | ⊢ 𝑂 = (oppCat‘𝐶) | 
| Ref | Expression | 
|---|---|
| 2oppccomf | ⊢ (compf‘𝐶) = (compf‘(oppCat‘𝑂)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oppcbas.1 | . . . . . . . . 9 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 2 | eqid 2737 | . . . . . . . . 9 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 3 | 1, 2 | oppcbas 17761 | . . . . . . . 8 ⊢ (Base‘𝐶) = (Base‘𝑂) | 
| 4 | eqid 2737 | . . . . . . . 8 ⊢ (comp‘𝑂) = (comp‘𝑂) | |
| 5 | eqid 2737 | . . . . . . . 8 ⊢ (oppCat‘𝑂) = (oppCat‘𝑂) | |
| 6 | simpr1 1195 | . . . . . . . 8 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶)) | |
| 7 | simpr2 1196 | . . . . . . . 8 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶)) | |
| 8 | simpr3 1197 | . . . . . . . 8 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑧 ∈ (Base‘𝐶)) | |
| 9 | 3, 4, 5, 6, 7, 8 | oppcco 17760 | . . . . . . 7 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝑂))𝑧)𝑓) = (𝑓(〈𝑧, 𝑦〉(comp‘𝑂)𝑥)𝑔)) | 
| 10 | eqid 2737 | . . . . . . . 8 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 11 | 2, 10, 1, 8, 7, 6 | oppcco 17760 | . . . . . . 7 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑓(〈𝑧, 𝑦〉(comp‘𝑂)𝑥)𝑔) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓)) | 
| 12 | 9, 11 | eqtr2d 2778 | . . . . . 6 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝑂))𝑧)𝑓)) | 
| 13 | 12 | ralrimivw 3150 | . . . . 5 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝑂))𝑧)𝑓)) | 
| 14 | 13 | ralrimivw 3150 | . . . 4 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝑂))𝑧)𝑓)) | 
| 15 | 14 | ralrimivvva 3205 | . . 3 ⊢ (⊤ → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝑂))𝑧)𝑓)) | 
| 16 | eqid 2737 | . . . 4 ⊢ (comp‘(oppCat‘𝑂)) = (comp‘(oppCat‘𝑂)) | |
| 17 | eqid 2737 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 18 | eqidd 2738 | . . . 4 ⊢ (⊤ → (Base‘𝐶) = (Base‘𝐶)) | |
| 19 | 1, 2 | 2oppcbas 17766 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘(oppCat‘𝑂)) | 
| 20 | 19 | a1i 11 | . . . 4 ⊢ (⊤ → (Base‘𝐶) = (Base‘(oppCat‘𝑂))) | 
| 21 | 1 | 2oppchomf 17767 | . . . . 5 ⊢ (Homf ‘𝐶) = (Homf ‘(oppCat‘𝑂)) | 
| 22 | 21 | a1i 11 | . . . 4 ⊢ (⊤ → (Homf ‘𝐶) = (Homf ‘(oppCat‘𝑂))) | 
| 23 | 10, 16, 17, 18, 20, 22 | comfeq 17749 | . . 3 ⊢ (⊤ → ((compf‘𝐶) = (compf‘(oppCat‘𝑂)) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘𝑂))𝑧)𝑓))) | 
| 24 | 15, 23 | mpbird 257 | . 2 ⊢ (⊤ → (compf‘𝐶) = (compf‘(oppCat‘𝑂))) | 
| 25 | 24 | mptru 1547 | 1 ⊢ (compf‘𝐶) = (compf‘(oppCat‘𝑂)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∧ wa 395 ∧ w3a 1087 = wceq 1540 ⊤wtru 1541 ∈ wcel 2108 ∀wral 3061 〈cop 4632 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 Hom chom 17308 compcco 17309 Homf chomf 17709 compfccomf 17710 oppCatcoppc 17754 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-tpos 8251 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-hom 17321 df-cco 17322 df-homf 17713 df-comf 17714 df-oppc 17755 | 
| This theorem is referenced by: oppcepi 17783 oppchofcl 18305 oppcyon 18314 oyoncl 18315 | 
| Copyright terms: Public domain | W3C validator |