Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmopn Structured version   Visualization version   GIF version

Theorem cvmopn 33381
Description: A covering map is an open map. (Contributed by Mario Carneiro, 7-May-2015.)
Assertion
Ref Expression
cvmopn ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) → (𝐹𝐴) ∈ 𝐽)

Proof of Theorem cvmopn
Dummy variables 𝑣 𝑢 𝑘 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . 2 (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))}) = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
2 eqid 2737 . 2 𝐶 = 𝐶
31, 2cvmopnlem 33379 1 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴𝐶) → (𝐹𝐴) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wral 3062  {crab 3404  cdif 3894  cin 3896  c0 4267  𝒫 cpw 4545  {csn 4571   cuni 4850  cmpt 5170  ccnv 5607  cres 5610  cima 5611  (class class class)co 7317  t crest 17208  Homeochmeo 22987   CovMap ccvm 33356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-int 4893  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5563  df-we 5565  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-ord 6292  df-on 6293  df-lim 6294  df-suc 6295  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-riota 7274  df-ov 7320  df-oprab 7321  df-mpo 7322  df-om 7760  df-1st 7878  df-2nd 7879  df-map 8667  df-en 8784  df-fin 8787  df-fi 9247  df-rest 17210  df-topgen 17231  df-top 22126  df-topon 22143  df-bases 22179  df-cn 22461  df-hmeo 22989  df-cvm 33357
This theorem is referenced by:  cvmlift2lem9a  33404
  Copyright terms: Public domain W3C validator