![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > angpined | Structured version Visualization version GIF version |
Description: If the angle at ABC is π, then 𝐴 is not equal to 𝐶. (Contributed by David Moews, 28-Feb-2017.) |
Ref | Expression |
---|---|
angpieqvd.angdef | ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) |
angpieqvd.A | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
angpieqvd.B | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
angpieqvd.C | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
angpieqvd.AneB | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
angpieqvd.BneC | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
Ref | Expression |
---|---|
angpined | ⊢ (𝜑 → (((𝐴 − 𝐵)𝐹(𝐶 − 𝐵)) = π → 𝐴 ≠ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | angpieqvd.angdef | . . 3 ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) | |
2 | angpieqvd.A | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | angpieqvd.B | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | angpieqvd.C | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
5 | angpieqvd.AneB | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
6 | angpieqvd.BneC | . . 3 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
7 | 1, 2, 3, 4, 5, 6 | angpieqvdlem2 26851 | . 2 ⊢ (𝜑 → (-((𝐶 − 𝐵) / (𝐴 − 𝐵)) ∈ ℝ+ ↔ ((𝐴 − 𝐵)𝐹(𝐶 − 𝐵)) = π)) |
8 | 1rp 13023 | . . . . . 6 ⊢ 1 ∈ ℝ+ | |
9 | 1re 11252 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
10 | ax-1ne0 11215 | . . . . . . 7 ⊢ 1 ≠ 0 | |
11 | rpneg 13051 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 1 ≠ 0) → (1 ∈ ℝ+ ↔ ¬ -1 ∈ ℝ+)) | |
12 | 9, 10, 11 | mp2an 690 | . . . . . 6 ⊢ (1 ∈ ℝ+ ↔ ¬ -1 ∈ ℝ+) |
13 | 8, 12 | mpbi 229 | . . . . 5 ⊢ ¬ -1 ∈ ℝ+ |
14 | 2, 3 | subcld 11609 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
15 | 14 | adantr 479 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐶 = 𝐴) → (𝐴 − 𝐵) ∈ ℂ) |
16 | 2, 3, 5 | subne0d 11618 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝐴 − 𝐵) ≠ 0) |
17 | 16 | adantr 479 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐶 = 𝐴) → (𝐴 − 𝐵) ≠ 0) |
18 | simpr 483 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝐶 = 𝐴) → 𝐶 = 𝐴) | |
19 | 18 | oveq1d 7428 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐶 = 𝐴) → (𝐶 − 𝐵) = (𝐴 − 𝐵)) |
20 | 15, 17, 19 | diveq1bd 12080 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐶 = 𝐴) → ((𝐶 − 𝐵) / (𝐴 − 𝐵)) = 1) |
21 | 20 | adantlr 713 | . . . . . . . . 9 ⊢ (((𝜑 ∧ -((𝐶 − 𝐵) / (𝐴 − 𝐵)) ∈ ℝ+) ∧ 𝐶 = 𝐴) → ((𝐶 − 𝐵) / (𝐴 − 𝐵)) = 1) |
22 | 21 | negeqd 11492 | . . . . . . . 8 ⊢ (((𝜑 ∧ -((𝐶 − 𝐵) / (𝐴 − 𝐵)) ∈ ℝ+) ∧ 𝐶 = 𝐴) → -((𝐶 − 𝐵) / (𝐴 − 𝐵)) = -1) |
23 | simplr 767 | . . . . . . . 8 ⊢ (((𝜑 ∧ -((𝐶 − 𝐵) / (𝐴 − 𝐵)) ∈ ℝ+) ∧ 𝐶 = 𝐴) → -((𝐶 − 𝐵) / (𝐴 − 𝐵)) ∈ ℝ+) | |
24 | 22, 23 | eqeltrrd 2827 | . . . . . . 7 ⊢ (((𝜑 ∧ -((𝐶 − 𝐵) / (𝐴 − 𝐵)) ∈ ℝ+) ∧ 𝐶 = 𝐴) → -1 ∈ ℝ+) |
25 | 24 | ex 411 | . . . . . 6 ⊢ ((𝜑 ∧ -((𝐶 − 𝐵) / (𝐴 − 𝐵)) ∈ ℝ+) → (𝐶 = 𝐴 → -1 ∈ ℝ+)) |
26 | 25 | necon3bd 2944 | . . . . 5 ⊢ ((𝜑 ∧ -((𝐶 − 𝐵) / (𝐴 − 𝐵)) ∈ ℝ+) → (¬ -1 ∈ ℝ+ → 𝐶 ≠ 𝐴)) |
27 | 13, 26 | mpi 20 | . . . 4 ⊢ ((𝜑 ∧ -((𝐶 − 𝐵) / (𝐴 − 𝐵)) ∈ ℝ+) → 𝐶 ≠ 𝐴) |
28 | 27 | ex 411 | . . 3 ⊢ (𝜑 → (-((𝐶 − 𝐵) / (𝐴 − 𝐵)) ∈ ℝ+ → 𝐶 ≠ 𝐴)) |
29 | necom 2984 | . . 3 ⊢ (𝐶 ≠ 𝐴 ↔ 𝐴 ≠ 𝐶) | |
30 | 28, 29 | imbitrdi 250 | . 2 ⊢ (𝜑 → (-((𝐶 − 𝐵) / (𝐴 − 𝐵)) ∈ ℝ+ → 𝐴 ≠ 𝐶)) |
31 | 7, 30 | sylbird 259 | 1 ⊢ (𝜑 → (((𝐴 − 𝐵)𝐹(𝐶 − 𝐵)) = π → 𝐴 ≠ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ∖ cdif 3943 {csn 4623 ‘cfv 6543 (class class class)co 7413 ∈ cmpo 7415 ℂcc 11144 ℝcr 11145 0cc0 11146 1c1 11147 − cmin 11482 -cneg 11483 / cdiv 11909 ℝ+crp 13019 ℑcim 15095 πcpi 16060 logclog 26575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7735 ax-inf2 9674 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 ax-addf 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-iin 4996 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6302 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7866 df-1st 7992 df-2nd 7993 df-supp 8164 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8723 df-map 8846 df-pm 8847 df-ixp 8916 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-fsupp 9396 df-fi 9444 df-sup 9475 df-inf 9476 df-oi 9543 df-card 9972 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12256 df-2 12318 df-3 12319 df-4 12320 df-5 12321 df-6 12322 df-7 12323 df-8 12324 df-9 12325 df-n0 12516 df-z 12602 df-dec 12721 df-uz 12866 df-q 12976 df-rp 13020 df-xneg 13137 df-xadd 13138 df-xmul 13139 df-ioo 13373 df-ioc 13374 df-ico 13375 df-icc 13376 df-fz 13530 df-fzo 13673 df-fl 13803 df-mod 13881 df-seq 14013 df-exp 14073 df-fac 14283 df-bc 14312 df-hash 14340 df-shft 15064 df-cj 15096 df-re 15097 df-im 15098 df-sqrt 15232 df-abs 15233 df-limsup 15465 df-clim 15482 df-rlim 15483 df-sum 15683 df-ef 16061 df-sin 16063 df-cos 16064 df-pi 16066 df-struct 17141 df-sets 17158 df-slot 17176 df-ndx 17188 df-base 17206 df-ress 17235 df-plusg 17271 df-mulr 17272 df-starv 17273 df-sca 17274 df-vsca 17275 df-ip 17276 df-tset 17277 df-ple 17278 df-ds 17280 df-unif 17281 df-hom 17282 df-cco 17283 df-rest 17429 df-topn 17430 df-0g 17448 df-gsum 17449 df-topgen 17450 df-pt 17451 df-prds 17454 df-xrs 17509 df-qtop 17514 df-imas 17515 df-xps 17517 df-mre 17591 df-mrc 17592 df-acs 17594 df-mgm 18625 df-sgrp 18704 df-mnd 18720 df-submnd 18766 df-mulg 19055 df-cntz 19304 df-cmn 19773 df-psmet 21328 df-xmet 21329 df-met 21330 df-bl 21331 df-mopn 21332 df-fbas 21333 df-fg 21334 df-cnfld 21337 df-top 22881 df-topon 22898 df-topsp 22920 df-bases 22934 df-cld 23008 df-ntr 23009 df-cls 23010 df-nei 23087 df-lp 23125 df-perf 23126 df-cn 23216 df-cnp 23217 df-haus 23304 df-tx 23551 df-hmeo 23744 df-fil 23835 df-fm 23927 df-flim 23928 df-flf 23929 df-xms 24311 df-ms 24312 df-tms 24313 df-cncf 24883 df-limc 25880 df-dv 25881 df-log 26577 |
This theorem is referenced by: angpieqvd 26853 |
Copyright terms: Public domain | W3C validator |