Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > divlt0gt0d | Structured version Visualization version GIF version |
Description: The ratio of a negative numerator and a positive denominator is negative. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
divlt0gt0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
divlt0gt0d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
divlt0gt0d.3 | ⊢ (𝜑 → 𝐴 < 0) |
Ref | Expression |
---|---|
divlt0gt0d | ⊢ (𝜑 → (𝐴 / 𝐵) < 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divlt0gt0d.3 | . . . 4 ⊢ (𝜑 → 𝐴 < 0) | |
2 | divlt0gt0d.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | 0red 11057 | . . . . 5 ⊢ (𝜑 → 0 ∈ ℝ) | |
4 | 2, 3 | ltnled 11201 | . . . 4 ⊢ (𝜑 → (𝐴 < 0 ↔ ¬ 0 ≤ 𝐴)) |
5 | 1, 4 | mpbid 231 | . . 3 ⊢ (𝜑 → ¬ 0 ≤ 𝐴) |
6 | divlt0gt0d.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
7 | 2, 6 | ge0divd 12889 | . . 3 ⊢ (𝜑 → (0 ≤ 𝐴 ↔ 0 ≤ (𝐴 / 𝐵))) |
8 | 5, 7 | mtbid 323 | . 2 ⊢ (𝜑 → ¬ 0 ≤ (𝐴 / 𝐵)) |
9 | 2, 6 | rerpdivcld 12882 | . . 3 ⊢ (𝜑 → (𝐴 / 𝐵) ∈ ℝ) |
10 | 9, 3 | ltnled 11201 | . 2 ⊢ (𝜑 → ((𝐴 / 𝐵) < 0 ↔ ¬ 0 ≤ (𝐴 / 𝐵))) |
11 | 8, 10 | mpbird 256 | 1 ⊢ (𝜑 → (𝐴 / 𝐵) < 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2105 class class class wbr 5086 (class class class)co 7316 ℝcr 10949 0cc0 10950 < clt 11088 ≤ cle 11089 / cdiv 11711 ℝ+crp 12809 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-br 5087 df-opab 5149 df-mpt 5170 df-id 5506 df-po 5520 df-so 5521 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-er 8547 df-en 8783 df-dom 8784 df-sdom 8785 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-div 11712 df-rp 12810 |
This theorem is referenced by: fourierdlem24 43927 fourierdlem26 43929 fourierdlem42 43945 |
Copyright terms: Public domain | W3C validator |