![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > zltlesub | Structured version Visualization version GIF version |
Description: If an integer 𝑁 is less than or equal to a real, and we subtract a quantity less than 1, then 𝑁 is less than or equal to the result. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
zltlesub.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
zltlesub.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
zltlesub.nlea | ⊢ (𝜑 → 𝑁 ≤ 𝐴) |
zltlesub.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
zltlesub.blt1 | ⊢ (𝜑 → 𝐵 < 1) |
zltlesub.asb | ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℤ) |
Ref | Expression |
---|---|
zltlesub | ⊢ (𝜑 → 𝑁 ≤ (𝐴 − 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zltlesub.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
2 | 1 | zred 11893 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
3 | zltlesub.asb | . . . . 5 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℤ) | |
4 | 3 | zred 11893 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℝ) |
5 | zltlesub.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
6 | 4, 5 | readdcld 10461 | . . 3 ⊢ (𝜑 → ((𝐴 − 𝐵) + 𝐵) ∈ ℝ) |
7 | peano2re 10605 | . . . 4 ⊢ ((𝐴 − 𝐵) ∈ ℝ → ((𝐴 − 𝐵) + 1) ∈ ℝ) | |
8 | 4, 7 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐴 − 𝐵) + 1) ∈ ℝ) |
9 | zltlesub.nlea | . . . 4 ⊢ (𝜑 → 𝑁 ≤ 𝐴) | |
10 | zltlesub.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
11 | 10 | recnd 10460 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
12 | 5 | recnd 10460 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
13 | 11, 12 | npcand 10794 | . . . 4 ⊢ (𝜑 → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
14 | 9, 13 | breqtrrd 4951 | . . 3 ⊢ (𝜑 → 𝑁 ≤ ((𝐴 − 𝐵) + 𝐵)) |
15 | 1red 10432 | . . . 4 ⊢ (𝜑 → 1 ∈ ℝ) | |
16 | zltlesub.blt1 | . . . 4 ⊢ (𝜑 → 𝐵 < 1) | |
17 | 5, 15, 4, 16 | ltadd2dd 10591 | . . 3 ⊢ (𝜑 → ((𝐴 − 𝐵) + 𝐵) < ((𝐴 − 𝐵) + 1)) |
18 | 2, 6, 8, 14, 17 | lelttrd 10590 | . 2 ⊢ (𝜑 → 𝑁 < ((𝐴 − 𝐵) + 1)) |
19 | zleltp1 11839 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ (𝐴 − 𝐵) ∈ ℤ) → (𝑁 ≤ (𝐴 − 𝐵) ↔ 𝑁 < ((𝐴 − 𝐵) + 1))) | |
20 | 1, 3, 19 | syl2anc 576 | . 2 ⊢ (𝜑 → (𝑁 ≤ (𝐴 − 𝐵) ↔ 𝑁 < ((𝐴 − 𝐵) + 1))) |
21 | 18, 20 | mpbird 249 | 1 ⊢ (𝜑 → 𝑁 ≤ (𝐴 − 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∈ wcel 2048 class class class wbr 4923 (class class class)co 6970 ℝcr 10326 1c1 10328 + caddc 10330 < clt 10466 ≤ cle 10467 − cmin 10662 ℤcz 11786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-er 8081 df-en 8299 df-dom 8300 df-sdom 8301 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-nn 11432 df-n0 11701 df-z 11787 |
This theorem is referenced by: fourierdlem65 41833 |
Copyright terms: Public domain | W3C validator |