Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2106
(class class class)co 7411 ℝcr 11111
/ cdiv 11873 ℝ+crp 12976 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 df-sub 11448 df-neg 11449 df-div 11874 df-rp 12977 |
This theorem is referenced by: iccf1o
13475 xov1plusxeqvd
13477 expmulnbnd
14200 discr
14205 geomulcvg
15824 mertenslem1
15832 retanhcl
16104 bitsfzolem
16377 bitsfzo
16378 bitsmod
16379 odmodnn0
19410 nmoi
24252 nmoleub
24255 icopnfcnv
24465 nmoleub2lem
24637 nmoleub2lem3
24638 pjthlem1
24961 ovolscalem1
25037 ovolscalem2
25038 ovolsca
25039 mbfmulc2lem
25171 itg2const2
25266 dvferm1lem
25508 abelthlem7
25957 logdivlti
26135 logdivle
26137 logcnlem3
26159 logcnlem4
26160 advlogexp
26170 cxpaddle
26267 cxploglim
26489 cxploglim2
26490 lgamgulmlem2
26541 lgamgulmlem3
26542 lgamucov
26549 ftalem1
26584 ftalem2
26585 basellem3
26594 fsumvma2
26724 chpval2
26728 chpchtsum
26729 chpub
26730 logfacrlim
26734 logexprlim
26735 efexple
26791 bposlem9
26802 chebbnd1lem2
26980 chebbnd1lem3
26981 chtppilim
26985 chpchtlim
26989 chpo1ubb
26991 rplogsumlem1
26994 rplogsumlem2
26995 rpvmasumlem
26997 dchrmusum2
27004 dchrvmasumlem2
27008 dchrisum0fno1
27021 dchrisum0lem1b
27025 dchrisum0lem1
27026 dchrisum0lem2a
27027 rplogsum
27037 mulog2sumlem1
27044 mulog2sumlem2
27045 vmalogdivsum2
27048 vmalogdivsum
27049 2vmadivsumlem
27050 log2sumbnd
27054 selberglem2
27056 selbergb
27059 selberg2b
27062 chpdifbndlem1
27063 selberg3lem1
27067 selberg3lem2
27068 selberg3
27069 selberg4lem1
27070 selberg4
27071 pntrsumo1
27075 selberg3r
27079 selberg4r
27080 selberg34r
27081 pntrlog2bndlem1
27087 pntrlog2bndlem2
27088 pntrlog2bndlem3
27089 pntrlog2bndlem4
27090 pntrlog2bndlem5
27091 pntrlog2bndlem6
27093 pntrlog2bnd
27094 pntpbnd1a
27095 pntpbnd2
27097 pntibndlem2
27101 pntibndlem3
27102 pntlemb
27107 pntlemg
27108 pntlemh
27109 pntlemn
27110 pntlemr
27112 pntlemj
27113 pntlemf
27115 pntlemk
27116 pntlemo
27117 pnt
27124 ostth2lem1
27128 ostth2lem4
27146 ostth3
27148 pjhthlem1
30682 esumcst
33130 dya2iocress
33342 dya2iocbrsiga
33343 dya2icobrsiga
33344 sxbrsigalem2
33354 probmeasb
33498 itg2addnclem3
36627 ftc1anclem7
36653 geomcau
36713 cntotbnd
36750 bfplem1
36776 fltnlta
41487 binomcxplemnotnn0
43197 divlt0gt0d
44075 lefldiveq
44081 ltmod
44433 0ellimcdiv
44444 wallispilem5
44864 stirlingr
44885 dirkercncflem1
44898 fourierdlem65
44966 hoiqssbllem2
45418 |