Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem26 Structured version   Visualization version   GIF version

Theorem fourierdlem26 45334
Description: Periodic image of a point 𝑌 that's in the period that begins with the point 𝑋. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem26.1 (𝜑𝐴 ∈ ℝ)
fourierdlem26.2 (𝜑𝐵 ∈ ℝ)
fourierdlem26.3 (𝜑𝐴 < 𝐵)
fourierdlem26.4 𝑇 = (𝐵𝐴)
fourierdlem26.5 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem26.6 (𝜑𝑋 ∈ ℝ)
fourierdlem26.7 (𝜑 → (𝐸𝑋) = 𝐵)
fourierdlem26.8 (𝜑𝑌 ∈ (𝑋(,](𝑋 + 𝑇)))
Assertion
Ref Expression
fourierdlem26 (𝜑 → (𝐸𝑌) = (𝐴 + (𝑌𝑋)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑇   𝑥,𝑋   𝑥,𝑌   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐸(𝑥)

Proof of Theorem fourierdlem26
StepHypRef Expression
1 fourierdlem26.5 . . . 4 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
21a1i 11 . . 3 (𝜑𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))))
3 simpr 484 . . . 4 ((𝜑𝑥 = 𝑌) → 𝑥 = 𝑌)
43oveq2d 7417 . . . . . . 7 ((𝜑𝑥 = 𝑌) → (𝐵𝑥) = (𝐵𝑌))
54oveq1d 7416 . . . . . 6 ((𝜑𝑥 = 𝑌) → ((𝐵𝑥) / 𝑇) = ((𝐵𝑌) / 𝑇))
65fveq2d 6885 . . . . 5 ((𝜑𝑥 = 𝑌) → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑌) / 𝑇)))
76oveq1d 7416 . . . 4 ((𝜑𝑥 = 𝑌) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇))
83, 7oveq12d 7419 . . 3 ((𝜑𝑥 = 𝑌) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)))
9 fourierdlem26.8 . . . . 5 (𝜑𝑌 ∈ (𝑋(,](𝑋 + 𝑇)))
10 fourierdlem26.6 . . . . . . 7 (𝜑𝑋 ∈ ℝ)
1110rexrd 11261 . . . . . 6 (𝜑𝑋 ∈ ℝ*)
12 fourierdlem26.4 . . . . . . . 8 𝑇 = (𝐵𝐴)
13 fourierdlem26.2 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
14 fourierdlem26.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
1513, 14resubcld 11639 . . . . . . . 8 (𝜑 → (𝐵𝐴) ∈ ℝ)
1612, 15eqeltrid 2829 . . . . . . 7 (𝜑𝑇 ∈ ℝ)
1710, 16readdcld 11240 . . . . . 6 (𝜑 → (𝑋 + 𝑇) ∈ ℝ)
18 elioc2 13384 . . . . . 6 ((𝑋 ∈ ℝ* ∧ (𝑋 + 𝑇) ∈ ℝ) → (𝑌 ∈ (𝑋(,](𝑋 + 𝑇)) ↔ (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌𝑌 ≤ (𝑋 + 𝑇))))
1911, 17, 18syl2anc 583 . . . . 5 (𝜑 → (𝑌 ∈ (𝑋(,](𝑋 + 𝑇)) ↔ (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌𝑌 ≤ (𝑋 + 𝑇))))
209, 19mpbid 231 . . . 4 (𝜑 → (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌𝑌 ≤ (𝑋 + 𝑇)))
2120simp1d 1139 . . 3 (𝜑𝑌 ∈ ℝ)
2213, 21resubcld 11639 . . . . . . . 8 (𝜑 → (𝐵𝑌) ∈ ℝ)
23 fourierdlem26.3 . . . . . . . . . . 11 (𝜑𝐴 < 𝐵)
2414, 13posdifd 11798 . . . . . . . . . . 11 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
2523, 24mpbid 231 . . . . . . . . . 10 (𝜑 → 0 < (𝐵𝐴))
2625, 12breqtrrdi 5180 . . . . . . . . 9 (𝜑 → 0 < 𝑇)
2726gt0ne0d 11775 . . . . . . . 8 (𝜑𝑇 ≠ 0)
2822, 16, 27redivcld 12039 . . . . . . 7 (𝜑 → ((𝐵𝑌) / 𝑇) ∈ ℝ)
2928flcld 13760 . . . . . 6 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) ∈ ℤ)
3029zred 12663 . . . . 5 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) ∈ ℝ)
3130, 16remulcld 11241 . . . 4 (𝜑 → ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) ∈ ℝ)
3221, 31readdcld 11240 . . 3 (𝜑 → (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) ∈ ℝ)
332, 8, 21, 32fvmptd 6995 . 2 (𝜑 → (𝐸𝑌) = (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)))
3410recnd 11239 . . . . . . . . . . . 12 (𝜑𝑋 ∈ ℂ)
3521recnd 11239 . . . . . . . . . . . 12 (𝜑𝑌 ∈ ℂ)
3634, 35pncan3d 11571 . . . . . . . . . . 11 (𝜑 → (𝑋 + (𝑌𝑋)) = 𝑌)
3736eqcomd 2730 . . . . . . . . . 10 (𝜑𝑌 = (𝑋 + (𝑌𝑋)))
3837oveq2d 7417 . . . . . . . . 9 (𝜑 → (𝐵𝑌) = (𝐵 − (𝑋 + (𝑌𝑋))))
3913recnd 11239 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
4035, 34subcld 11568 . . . . . . . . . 10 (𝜑 → (𝑌𝑋) ∈ ℂ)
4139, 34, 40subsub4d 11599 . . . . . . . . 9 (𝜑 → ((𝐵𝑋) − (𝑌𝑋)) = (𝐵 − (𝑋 + (𝑌𝑋))))
4238, 41eqtr4d 2767 . . . . . . . 8 (𝜑 → (𝐵𝑌) = ((𝐵𝑋) − (𝑌𝑋)))
4342oveq1d 7416 . . . . . . 7 (𝜑 → ((𝐵𝑌) / 𝑇) = (((𝐵𝑋) − (𝑌𝑋)) / 𝑇))
4413, 10resubcld 11639 . . . . . . . . 9 (𝜑 → (𝐵𝑋) ∈ ℝ)
4544recnd 11239 . . . . . . . 8 (𝜑 → (𝐵𝑋) ∈ ℂ)
4616recnd 11239 . . . . . . . 8 (𝜑𝑇 ∈ ℂ)
4745, 40, 46, 27divsubdird 12026 . . . . . . 7 (𝜑 → (((𝐵𝑋) − (𝑌𝑋)) / 𝑇) = (((𝐵𝑋) / 𝑇) − ((𝑌𝑋) / 𝑇)))
4840, 46, 27divnegd 12000 . . . . . . . . . 10 (𝜑 → -((𝑌𝑋) / 𝑇) = (-(𝑌𝑋) / 𝑇))
4935, 34negsubdi2d 11584 . . . . . . . . . . 11 (𝜑 → -(𝑌𝑋) = (𝑋𝑌))
5049oveq1d 7416 . . . . . . . . . 10 (𝜑 → (-(𝑌𝑋) / 𝑇) = ((𝑋𝑌) / 𝑇))
5148, 50eqtrd 2764 . . . . . . . . 9 (𝜑 → -((𝑌𝑋) / 𝑇) = ((𝑋𝑌) / 𝑇))
5251oveq2d 7417 . . . . . . . 8 (𝜑 → (((𝐵𝑋) / 𝑇) + -((𝑌𝑋) / 𝑇)) = (((𝐵𝑋) / 𝑇) + ((𝑋𝑌) / 𝑇)))
5344, 16, 27redivcld 12039 . . . . . . . . . 10 (𝜑 → ((𝐵𝑋) / 𝑇) ∈ ℝ)
5453recnd 11239 . . . . . . . . 9 (𝜑 → ((𝐵𝑋) / 𝑇) ∈ ℂ)
5540, 46, 27divcld 11987 . . . . . . . . 9 (𝜑 → ((𝑌𝑋) / 𝑇) ∈ ℂ)
5654, 55negsubd 11574 . . . . . . . 8 (𝜑 → (((𝐵𝑋) / 𝑇) + -((𝑌𝑋) / 𝑇)) = (((𝐵𝑋) / 𝑇) − ((𝑌𝑋) / 𝑇)))
57 1cnd 11206 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
5854, 57npcand 11572 . . . . . . . . . . 11 (𝜑 → ((((𝐵𝑋) / 𝑇) − 1) + 1) = ((𝐵𝑋) / 𝑇))
5958eqcomd 2730 . . . . . . . . . 10 (𝜑 → ((𝐵𝑋) / 𝑇) = ((((𝐵𝑋) / 𝑇) − 1) + 1))
6059oveq1d 7416 . . . . . . . . 9 (𝜑 → (((𝐵𝑋) / 𝑇) + ((𝑋𝑌) / 𝑇)) = (((((𝐵𝑋) / 𝑇) − 1) + 1) + ((𝑋𝑌) / 𝑇)))
6154, 57subcld 11568 . . . . . . . . . 10 (𝜑 → (((𝐵𝑋) / 𝑇) − 1) ∈ ℂ)
6234, 35subcld 11568 . . . . . . . . . . 11 (𝜑 → (𝑋𝑌) ∈ ℂ)
6362, 46, 27divcld 11987 . . . . . . . . . 10 (𝜑 → ((𝑋𝑌) / 𝑇) ∈ ℂ)
6461, 57, 63addassd 11233 . . . . . . . . 9 (𝜑 → (((((𝐵𝑋) / 𝑇) − 1) + 1) + ((𝑋𝑌) / 𝑇)) = ((((𝐵𝑋) / 𝑇) − 1) + (1 + ((𝑋𝑌) / 𝑇))))
6560, 64eqtrd 2764 . . . . . . . 8 (𝜑 → (((𝐵𝑋) / 𝑇) + ((𝑋𝑌) / 𝑇)) = ((((𝐵𝑋) / 𝑇) − 1) + (1 + ((𝑋𝑌) / 𝑇))))
6652, 56, 653eqtr3d 2772 . . . . . . 7 (𝜑 → (((𝐵𝑋) / 𝑇) − ((𝑌𝑋) / 𝑇)) = ((((𝐵𝑋) / 𝑇) − 1) + (1 + ((𝑋𝑌) / 𝑇))))
6743, 47, 663eqtrd 2768 . . . . . 6 (𝜑 → ((𝐵𝑌) / 𝑇) = ((((𝐵𝑋) / 𝑇) − 1) + (1 + ((𝑋𝑌) / 𝑇))))
6867fveq2d 6885 . . . . 5 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) = (⌊‘((((𝐵𝑋) / 𝑇) − 1) + (1 + ((𝑋𝑌) / 𝑇)))))
6910, 21resubcld 11639 . . . . . . . . 9 (𝜑 → (𝑋𝑌) ∈ ℝ)
7016, 69readdcld 11240 . . . . . . . 8 (𝜑 → (𝑇 + (𝑋𝑌)) ∈ ℝ)
7116, 26elrpd 13010 . . . . . . . 8 (𝜑𝑇 ∈ ℝ+)
7234, 46addcomd 11413 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋 + 𝑇) = (𝑇 + 𝑋))
7372oveq2d 7417 . . . . . . . . . . . . . 14 (𝜑 → (𝑋(,](𝑋 + 𝑇)) = (𝑋(,](𝑇 + 𝑋)))
749, 73eleqtrd 2827 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ (𝑋(,](𝑇 + 𝑋)))
7516, 10readdcld 11240 . . . . . . . . . . . . . 14 (𝜑 → (𝑇 + 𝑋) ∈ ℝ)
76 elioc2 13384 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℝ* ∧ (𝑇 + 𝑋) ∈ ℝ) → (𝑌 ∈ (𝑋(,](𝑇 + 𝑋)) ↔ (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌𝑌 ≤ (𝑇 + 𝑋))))
7711, 75, 76syl2anc 583 . . . . . . . . . . . . 13 (𝜑 → (𝑌 ∈ (𝑋(,](𝑇 + 𝑋)) ↔ (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌𝑌 ≤ (𝑇 + 𝑋))))
7874, 77mpbid 231 . . . . . . . . . . . 12 (𝜑 → (𝑌 ∈ ℝ ∧ 𝑋 < 𝑌𝑌 ≤ (𝑇 + 𝑋)))
7978simp3d 1141 . . . . . . . . . . 11 (𝜑𝑌 ≤ (𝑇 + 𝑋))
8021, 10, 16lesubaddd 11808 . . . . . . . . . . 11 (𝜑 → ((𝑌𝑋) ≤ 𝑇𝑌 ≤ (𝑇 + 𝑋)))
8179, 80mpbird 257 . . . . . . . . . 10 (𝜑 → (𝑌𝑋) ≤ 𝑇)
8221, 10resubcld 11639 . . . . . . . . . . 11 (𝜑 → (𝑌𝑋) ∈ ℝ)
8316, 82subge0d 11801 . . . . . . . . . 10 (𝜑 → (0 ≤ (𝑇 − (𝑌𝑋)) ↔ (𝑌𝑋) ≤ 𝑇))
8481, 83mpbird 257 . . . . . . . . 9 (𝜑 → 0 ≤ (𝑇 − (𝑌𝑋)))
8546, 35, 34subsub2d 11597 . . . . . . . . 9 (𝜑 → (𝑇 − (𝑌𝑋)) = (𝑇 + (𝑋𝑌)))
8684, 85breqtrd 5164 . . . . . . . 8 (𝜑 → 0 ≤ (𝑇 + (𝑋𝑌)))
8770, 71, 86divge0d 13053 . . . . . . 7 (𝜑 → 0 ≤ ((𝑇 + (𝑋𝑌)) / 𝑇))
8846, 62, 46, 27divdird 12025 . . . . . . . 8 (𝜑 → ((𝑇 + (𝑋𝑌)) / 𝑇) = ((𝑇 / 𝑇) + ((𝑋𝑌) / 𝑇)))
8946, 27dividd 11985 . . . . . . . . . 10 (𝜑 → (𝑇 / 𝑇) = 1)
9089eqcomd 2730 . . . . . . . . 9 (𝜑 → 1 = (𝑇 / 𝑇))
9190oveq1d 7416 . . . . . . . 8 (𝜑 → (1 + ((𝑋𝑌) / 𝑇)) = ((𝑇 / 𝑇) + ((𝑋𝑌) / 𝑇)))
9288, 91eqtr4d 2767 . . . . . . 7 (𝜑 → ((𝑇 + (𝑋𝑌)) / 𝑇) = (1 + ((𝑋𝑌) / 𝑇)))
9387, 92breqtrd 5164 . . . . . 6 (𝜑 → 0 ≤ (1 + ((𝑋𝑌) / 𝑇)))
9420simp2d 1140 . . . . . . . . 9 (𝜑𝑋 < 𝑌)
9510, 21sublt0d 11837 . . . . . . . . 9 (𝜑 → ((𝑋𝑌) < 0 ↔ 𝑋 < 𝑌))
9694, 95mpbird 257 . . . . . . . 8 (𝜑 → (𝑋𝑌) < 0)
9769, 71, 96divlt0gt0d 44481 . . . . . . 7 (𝜑 → ((𝑋𝑌) / 𝑇) < 0)
9869, 16, 27redivcld 12039 . . . . . . . 8 (𝜑 → ((𝑋𝑌) / 𝑇) ∈ ℝ)
99 1red 11212 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
100 ltaddneg 11426 . . . . . . . 8 ((((𝑋𝑌) / 𝑇) ∈ ℝ ∧ 1 ∈ ℝ) → (((𝑋𝑌) / 𝑇) < 0 ↔ (1 + ((𝑋𝑌) / 𝑇)) < 1))
10198, 99, 100syl2anc 583 . . . . . . 7 (𝜑 → (((𝑋𝑌) / 𝑇) < 0 ↔ (1 + ((𝑋𝑌) / 𝑇)) < 1))
10297, 101mpbid 231 . . . . . 6 (𝜑 → (1 + ((𝑋𝑌) / 𝑇)) < 1)
10353flcld 13760 . . . . . . . . . . . . . . 15 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
104103zcnd 12664 . . . . . . . . . . . . . 14 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℂ)
105104, 46mulcld 11231 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℂ)
10634, 105pncan2d 11570 . . . . . . . . . . . 12 (𝜑 → ((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑋) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
107106eqcomd 2730 . . . . . . . . . . 11 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) = ((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑋))
108107oveq1d 7416 . . . . . . . . . 10 (𝜑 → (((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) / 𝑇) = (((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑋) / 𝑇))
109104, 46, 27divcan4d 11993 . . . . . . . . . 10 (𝜑 → (((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) / 𝑇) = (⌊‘((𝐵𝑋) / 𝑇)))
110 id 22 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑋𝑥 = 𝑋)
111 oveq2 7409 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑋 → (𝐵𝑥) = (𝐵𝑋))
112111oveq1d 7416 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑋 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑋) / 𝑇))
113112fveq2d 6885 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑋 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑋) / 𝑇)))
114113oveq1d 7416 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑋 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
115110, 114oveq12d 7419 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑋 → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
116115adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 = 𝑋) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
117 reflcl 13758 . . . . . . . . . . . . . . . . . 18 (((𝐵𝑋) / 𝑇) ∈ ℝ → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℝ)
11853, 117syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℝ)
119118, 16remulcld 11241 . . . . . . . . . . . . . . . 16 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℝ)
12010, 119readdcld 11240 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) ∈ ℝ)
1212, 116, 10, 120fvmptd 6995 . . . . . . . . . . . . . 14 (𝜑 → (𝐸𝑋) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
122121eqcomd 2730 . . . . . . . . . . . . 13 (𝜑 → (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) = (𝐸𝑋))
123122oveq1d 7416 . . . . . . . . . . . 12 (𝜑 → ((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑋) = ((𝐸𝑋) − 𝑋))
124123oveq1d 7416 . . . . . . . . . . 11 (𝜑 → (((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑋) / 𝑇) = (((𝐸𝑋) − 𝑋) / 𝑇))
125 fourierdlem26.7 . . . . . . . . . . . . 13 (𝜑 → (𝐸𝑋) = 𝐵)
126125oveq1d 7416 . . . . . . . . . . . 12 (𝜑 → ((𝐸𝑋) − 𝑋) = (𝐵𝑋))
127126oveq1d 7416 . . . . . . . . . . 11 (𝜑 → (((𝐸𝑋) − 𝑋) / 𝑇) = ((𝐵𝑋) / 𝑇))
128124, 127eqtrd 2764 . . . . . . . . . 10 (𝜑 → (((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑋) / 𝑇) = ((𝐵𝑋) / 𝑇))
129108, 109, 1283eqtr3d 2772 . . . . . . . . 9 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) = ((𝐵𝑋) / 𝑇))
130129, 103eqeltrrd 2826 . . . . . . . 8 (𝜑 → ((𝐵𝑋) / 𝑇) ∈ ℤ)
131 1zzd 12590 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
132130, 131zsubcld 12668 . . . . . . 7 (𝜑 → (((𝐵𝑋) / 𝑇) − 1) ∈ ℤ)
13399, 98readdcld 11240 . . . . . . 7 (𝜑 → (1 + ((𝑋𝑌) / 𝑇)) ∈ ℝ)
134 flbi2 13779 . . . . . . 7 (((((𝐵𝑋) / 𝑇) − 1) ∈ ℤ ∧ (1 + ((𝑋𝑌) / 𝑇)) ∈ ℝ) → ((⌊‘((((𝐵𝑋) / 𝑇) − 1) + (1 + ((𝑋𝑌) / 𝑇)))) = (((𝐵𝑋) / 𝑇) − 1) ↔ (0 ≤ (1 + ((𝑋𝑌) / 𝑇)) ∧ (1 + ((𝑋𝑌) / 𝑇)) < 1)))
135132, 133, 134syl2anc 583 . . . . . 6 (𝜑 → ((⌊‘((((𝐵𝑋) / 𝑇) − 1) + (1 + ((𝑋𝑌) / 𝑇)))) = (((𝐵𝑋) / 𝑇) − 1) ↔ (0 ≤ (1 + ((𝑋𝑌) / 𝑇)) ∧ (1 + ((𝑋𝑌) / 𝑇)) < 1)))
13693, 102, 135mpbir2and 710 . . . . 5 (𝜑 → (⌊‘((((𝐵𝑋) / 𝑇) − 1) + (1 + ((𝑋𝑌) / 𝑇)))) = (((𝐵𝑋) / 𝑇) − 1))
137129eqcomd 2730 . . . . . 6 (𝜑 → ((𝐵𝑋) / 𝑇) = (⌊‘((𝐵𝑋) / 𝑇)))
138137oveq1d 7416 . . . . 5 (𝜑 → (((𝐵𝑋) / 𝑇) − 1) = ((⌊‘((𝐵𝑋) / 𝑇)) − 1))
13968, 136, 1383eqtrd 2768 . . . 4 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) = ((⌊‘((𝐵𝑋) / 𝑇)) − 1))
140139oveq1d 7416 . . 3 (𝜑 → ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) = (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇))
141140oveq2d 7417 . 2 (𝜑 → (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) = (𝑌 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)))
14237oveq1d 7416 . . 3 (𝜑 → (𝑌 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)) = ((𝑋 + (𝑌𝑋)) + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)))
143104, 57, 46subdird 11668 . . . . 5 (𝜑 → (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇) = (((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) − (1 · 𝑇)))
144143oveq2d 7417 . . . 4 (𝜑 → ((𝑋 + (𝑌𝑋)) + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)) = ((𝑋 + (𝑌𝑋)) + (((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) − (1 · 𝑇))))
14534, 40addcld 11230 . . . . . 6 (𝜑 → (𝑋 + (𝑌𝑋)) ∈ ℂ)
14657, 46mulcld 11231 . . . . . 6 (𝜑 → (1 · 𝑇) ∈ ℂ)
147145, 105, 146addsubassd 11588 . . . . 5 (𝜑 → (((𝑋 + (𝑌𝑋)) + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − (1 · 𝑇)) = ((𝑋 + (𝑌𝑋)) + (((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) − (1 · 𝑇))))
148147eqcomd 2730 . . . 4 (𝜑 → ((𝑋 + (𝑌𝑋)) + (((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) − (1 · 𝑇))) = (((𝑋 + (𝑌𝑋)) + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − (1 · 𝑇)))
14934, 40, 105add32d 11438 . . . . . 6 (𝜑 → ((𝑋 + (𝑌𝑋)) + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) = ((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) + (𝑌𝑋)))
150149oveq1d 7416 . . . . 5 (𝜑 → (((𝑋 + (𝑌𝑋)) + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − (1 · 𝑇)) = (((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) + (𝑌𝑋)) − (1 · 𝑇)))
151122oveq1d 7416 . . . . . 6 (𝜑 → ((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) + (𝑌𝑋)) = ((𝐸𝑋) + (𝑌𝑋)))
15246mullidd 11229 . . . . . 6 (𝜑 → (1 · 𝑇) = 𝑇)
153151, 152oveq12d 7419 . . . . 5 (𝜑 → (((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) + (𝑌𝑋)) − (1 · 𝑇)) = (((𝐸𝑋) + (𝑌𝑋)) − 𝑇))
154125, 13eqeltrd 2825 . . . . . . . 8 (𝜑 → (𝐸𝑋) ∈ ℝ)
155154recnd 11239 . . . . . . 7 (𝜑 → (𝐸𝑋) ∈ ℂ)
156155, 40, 46addsubd 11589 . . . . . 6 (𝜑 → (((𝐸𝑋) + (𝑌𝑋)) − 𝑇) = (((𝐸𝑋) − 𝑇) + (𝑌𝑋)))
157125oveq1d 7416 . . . . . . . 8 (𝜑 → ((𝐸𝑋) − 𝑇) = (𝐵𝑇))
15812a1i 11 . . . . . . . . 9 (𝜑𝑇 = (𝐵𝐴))
159158oveq2d 7417 . . . . . . . 8 (𝜑 → (𝐵𝑇) = (𝐵 − (𝐵𝐴)))
16014recnd 11239 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
16139, 160nncand 11573 . . . . . . . 8 (𝜑 → (𝐵 − (𝐵𝐴)) = 𝐴)
162157, 159, 1613eqtrd 2768 . . . . . . 7 (𝜑 → ((𝐸𝑋) − 𝑇) = 𝐴)
163162oveq1d 7416 . . . . . 6 (𝜑 → (((𝐸𝑋) − 𝑇) + (𝑌𝑋)) = (𝐴 + (𝑌𝑋)))
164156, 163eqtrd 2764 . . . . 5 (𝜑 → (((𝐸𝑋) + (𝑌𝑋)) − 𝑇) = (𝐴 + (𝑌𝑋)))
165150, 153, 1643eqtrd 2768 . . . 4 (𝜑 → (((𝑋 + (𝑌𝑋)) + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − (1 · 𝑇)) = (𝐴 + (𝑌𝑋)))
166144, 148, 1653eqtrd 2768 . . 3 (𝜑 → ((𝑋 + (𝑌𝑋)) + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)) = (𝐴 + (𝑌𝑋)))
167142, 166eqtrd 2764 . 2 (𝜑 → (𝑌 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)) = (𝐴 + (𝑌𝑋)))
16833, 141, 1673eqtrd 2768 1 (𝜑 → (𝐸𝑌) = (𝐴 + (𝑌𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098   class class class wbr 5138  cmpt 5221  cfv 6533  (class class class)co 7401  cr 11105  0cc0 11106  1c1 11107   + caddc 11109   · cmul 11111  *cxr 11244   < clt 11245  cle 11246  cmin 11441  -cneg 11442   / cdiv 11868  cz 12555  (,]cioc 13322  cfl 13752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-inf 9434  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-n0 12470  df-z 12556  df-uz 12820  df-rp 12972  df-ioc 13326  df-fl 13754
This theorem is referenced by:  fourierdlem65  45372  fourierdlem79  45386
  Copyright terms: Public domain W3C validator