| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cardadju | Structured version Visualization version GIF version | ||
| Description: The cardinal sum is equinumerous to an ordinal sum of the cardinals. (Contributed by Mario Carneiro, 6-Feb-2013.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| cardadju | ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ⊔ 𝐵) ≈ ((card‘𝐴) +o (card‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardon 9843 | . . . 4 ⊢ (card‘𝐴) ∈ On | |
| 2 | cardon 9843 | . . . 4 ⊢ (card‘𝐵) ∈ On | |
| 3 | onadju 10091 | . . . 4 ⊢ (((card‘𝐴) ∈ On ∧ (card‘𝐵) ∈ On) → ((card‘𝐴) +o (card‘𝐵)) ≈ ((card‘𝐴) ⊔ (card‘𝐵))) | |
| 4 | 1, 2, 3 | mp2an 692 | . . 3 ⊢ ((card‘𝐴) +o (card‘𝐵)) ≈ ((card‘𝐴) ⊔ (card‘𝐵)) |
| 5 | cardid2 9852 | . . . 4 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
| 6 | cardid2 9852 | . . . 4 ⊢ (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵) | |
| 7 | djuen 10067 | . . . 4 ⊢ (((card‘𝐴) ≈ 𝐴 ∧ (card‘𝐵) ≈ 𝐵) → ((card‘𝐴) ⊔ (card‘𝐵)) ≈ (𝐴 ⊔ 𝐵)) | |
| 8 | 5, 6, 7 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊔ (card‘𝐵)) ≈ (𝐴 ⊔ 𝐵)) |
| 9 | entr 8934 | . . 3 ⊢ ((((card‘𝐴) +o (card‘𝐵)) ≈ ((card‘𝐴) ⊔ (card‘𝐵)) ∧ ((card‘𝐴) ⊔ (card‘𝐵)) ≈ (𝐴 ⊔ 𝐵)) → ((card‘𝐴) +o (card‘𝐵)) ≈ (𝐴 ⊔ 𝐵)) | |
| 10 | 4, 8, 9 | sylancr 587 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) +o (card‘𝐵)) ≈ (𝐴 ⊔ 𝐵)) |
| 11 | 10 | ensymd 8933 | 1 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ⊔ 𝐵) ≈ ((card‘𝐴) +o (card‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 class class class wbr 5093 dom cdm 5619 Oncon0 6312 ‘cfv 6487 (class class class)co 7352 +o coa 8388 ≈ cen 8872 ⊔ cdju 9797 cardccrd 9834 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-oadd 8395 df-er 8628 df-en 8876 df-dju 9800 df-card 9838 |
| This theorem is referenced by: djunum 10093 pwsdompw 10100 |
| Copyright terms: Public domain | W3C validator |