MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardadju Structured version   Visualization version   GIF version

Theorem cardadju 9856
Description: The cardinal sum is equinumerous to an ordinal sum of the cardinals. (Contributed by Mario Carneiro, 6-Feb-2013.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
cardadju ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵) ≈ ((card‘𝐴) +o (card‘𝐵)))

Proof of Theorem cardadju
StepHypRef Expression
1 cardon 9608 . . . 4 (card‘𝐴) ∈ On
2 cardon 9608 . . . 4 (card‘𝐵) ∈ On
3 onadju 9855 . . . 4 (((card‘𝐴) ∈ On ∧ (card‘𝐵) ∈ On) → ((card‘𝐴) +o (card‘𝐵)) ≈ ((card‘𝐴) ⊔ (card‘𝐵)))
41, 2, 3mp2an 692 . . 3 ((card‘𝐴) +o (card‘𝐵)) ≈ ((card‘𝐴) ⊔ (card‘𝐵))
5 cardid2 9617 . . . 4 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
6 cardid2 9617 . . . 4 (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵)
7 djuen 9831 . . . 4 (((card‘𝐴) ≈ 𝐴 ∧ (card‘𝐵) ≈ 𝐵) → ((card‘𝐴) ⊔ (card‘𝐵)) ≈ (𝐴𝐵))
85, 6, 7syl2an 599 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊔ (card‘𝐵)) ≈ (𝐴𝐵))
9 entr 8724 . . 3 ((((card‘𝐴) +o (card‘𝐵)) ≈ ((card‘𝐴) ⊔ (card‘𝐵)) ∧ ((card‘𝐴) ⊔ (card‘𝐵)) ≈ (𝐴𝐵)) → ((card‘𝐴) +o (card‘𝐵)) ≈ (𝐴𝐵))
104, 8, 9sylancr 590 . 2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) +o (card‘𝐵)) ≈ (𝐴𝐵))
1110ensymd 8723 1 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵) ≈ ((card‘𝐴) +o (card‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2112   class class class wbr 5070  dom cdm 5579  Oncon0 6248  cfv 6415  (class class class)co 7252   +o coa 8241  cen 8665  cdju 9562  cardccrd 9599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5203  ax-sep 5216  ax-nul 5223  ax-pow 5282  ax-pr 5346  ax-un 7563
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3425  df-sbc 3713  df-csb 3830  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5186  df-id 5479  df-eprel 5485  df-po 5493  df-so 5494  df-fr 5534  df-we 5536  df-xp 5585  df-rel 5586  df-cnv 5587  df-co 5588  df-dm 5589  df-rn 5590  df-res 5591  df-ima 5592  df-pred 6189  df-ord 6251  df-on 6252  df-lim 6253  df-suc 6254  df-iota 6373  df-fun 6417  df-fn 6418  df-f 6419  df-f1 6420  df-fo 6421  df-f1o 6422  df-fv 6423  df-ov 7255  df-oprab 7256  df-mpo 7257  df-om 7685  df-1st 7801  df-2nd 7802  df-wrecs 8089  df-recs 8150  df-rdg 8188  df-1o 8244  df-oadd 8248  df-er 8433  df-en 8669  df-dju 9565  df-card 9603
This theorem is referenced by:  djunum  9857  ficardunOLD  9863  ficardun2OLD  9865  pwsdompw  9866
  Copyright terms: Public domain W3C validator