![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvcn | Structured version Visualization version GIF version |
Description: A differentiable function is continuous. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by Mario Carneiro, 7-Sep-2015.) |
Ref | Expression |
---|---|
dvcn | β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ dom (π D πΉ) = π΄) β πΉ β (π΄βcnββ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1190 | . . 3 β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ dom (π D πΉ) = π΄) β πΉ:π΄βΆβ) | |
2 | eqid 2728 | . . . . . 6 β’ ((TopOpenββfld) βΎt π΄) = ((TopOpenββfld) βΎt π΄) | |
3 | eqid 2728 | . . . . . 6 β’ (TopOpenββfld) = (TopOpenββfld) | |
4 | 2, 3 | dvcnp2 25843 | . . . . 5 β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ π₯ β dom (π D πΉ)) β πΉ β ((((TopOpenββfld) βΎt π΄) CnP (TopOpenββfld))βπ₯)) |
5 | 4 | ralrimiva 3142 | . . . 4 β’ ((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β βπ₯ β dom (π D πΉ)πΉ β ((((TopOpenββfld) βΎt π΄) CnP (TopOpenββfld))βπ₯)) |
6 | raleq 3318 | . . . . 5 β’ (dom (π D πΉ) = π΄ β (βπ₯ β dom (π D πΉ)πΉ β ((((TopOpenββfld) βΎt π΄) CnP (TopOpenββfld))βπ₯) β βπ₯ β π΄ πΉ β ((((TopOpenββfld) βΎt π΄) CnP (TopOpenββfld))βπ₯))) | |
7 | 6 | biimpd 228 | . . . 4 β’ (dom (π D πΉ) = π΄ β (βπ₯ β dom (π D πΉ)πΉ β ((((TopOpenββfld) βΎt π΄) CnP (TopOpenββfld))βπ₯) β βπ₯ β π΄ πΉ β ((((TopOpenββfld) βΎt π΄) CnP (TopOpenββfld))βπ₯))) |
8 | 5, 7 | mpan9 506 | . . 3 β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ dom (π D πΉ) = π΄) β βπ₯ β π΄ πΉ β ((((TopOpenββfld) βΎt π΄) CnP (TopOpenββfld))βπ₯)) |
9 | 3 | cnfldtopon 24693 | . . . . 5 β’ (TopOpenββfld) β (TopOnββ) |
10 | simpl3 1191 | . . . . . 6 β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ dom (π D πΉ) = π΄) β π΄ β π) | |
11 | simpl1 1189 | . . . . . 6 β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ dom (π D πΉ) = π΄) β π β β) | |
12 | 10, 11 | sstrd 3989 | . . . . 5 β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ dom (π D πΉ) = π΄) β π΄ β β) |
13 | resttopon 23059 | . . . . 5 β’ (((TopOpenββfld) β (TopOnββ) β§ π΄ β β) β ((TopOpenββfld) βΎt π΄) β (TopOnβπ΄)) | |
14 | 9, 12, 13 | sylancr 586 | . . . 4 β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ dom (π D πΉ) = π΄) β ((TopOpenββfld) βΎt π΄) β (TopOnβπ΄)) |
15 | cncnp 23178 | . . . 4 β’ ((((TopOpenββfld) βΎt π΄) β (TopOnβπ΄) β§ (TopOpenββfld) β (TopOnββ)) β (πΉ β (((TopOpenββfld) βΎt π΄) Cn (TopOpenββfld)) β (πΉ:π΄βΆβ β§ βπ₯ β π΄ πΉ β ((((TopOpenββfld) βΎt π΄) CnP (TopOpenββfld))βπ₯)))) | |
16 | 14, 9, 15 | sylancl 585 | . . 3 β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ dom (π D πΉ) = π΄) β (πΉ β (((TopOpenββfld) βΎt π΄) Cn (TopOpenββfld)) β (πΉ:π΄βΆβ β§ βπ₯ β π΄ πΉ β ((((TopOpenββfld) βΎt π΄) CnP (TopOpenββfld))βπ₯)))) |
17 | 1, 8, 16 | mpbir2and 712 | . 2 β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ dom (π D πΉ) = π΄) β πΉ β (((TopOpenββfld) βΎt π΄) Cn (TopOpenββfld))) |
18 | ssid 4001 | . . 3 β’ β β β | |
19 | 9 | toponrestid 22817 | . . . 4 β’ (TopOpenββfld) = ((TopOpenββfld) βΎt β) |
20 | 3, 2, 19 | cncfcn 24824 | . . 3 β’ ((π΄ β β β§ β β β) β (π΄βcnββ) = (((TopOpenββfld) βΎt π΄) Cn (TopOpenββfld))) |
21 | 12, 18, 20 | sylancl 585 | . 2 β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ dom (π D πΉ) = π΄) β (π΄βcnββ) = (((TopOpenββfld) βΎt π΄) Cn (TopOpenββfld))) |
22 | 17, 21 | eleqtrrd 2832 | 1 β’ (((π β β β§ πΉ:π΄βΆβ β§ π΄ β π) β§ dom (π D πΉ) = π΄) β πΉ β (π΄βcnββ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β§ w3a 1085 = wceq 1534 β wcel 2099 βwral 3057 β wss 3945 dom cdm 5673 βΆwf 6539 βcfv 6543 (class class class)co 7415 βcc 11131 βΎt crest 17396 TopOpenctopn 17397 βfldccnfld 21273 TopOnctopon 22806 Cn ccn 23122 CnP ccnp 23123 βcnβccncf 24790 D cdv 25786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 ax-addf 11212 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-iin 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-of 7680 df-om 7866 df-1st 7988 df-2nd 7989 df-supp 8161 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-1o 8481 df-2o 8482 df-er 8719 df-map 8841 df-pm 8842 df-ixp 8911 df-en 8959 df-dom 8960 df-sdom 8961 df-fin 8962 df-fsupp 9381 df-fi 9429 df-sup 9460 df-inf 9461 df-oi 9528 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-n0 12498 df-z 12584 df-dec 12703 df-uz 12848 df-q 12958 df-rp 13002 df-xneg 13119 df-xadd 13120 df-xmul 13121 df-icc 13358 df-fz 13512 df-fzo 13655 df-seq 13994 df-exp 14054 df-hash 14317 df-cj 15073 df-re 15074 df-im 15075 df-sqrt 15209 df-abs 15210 df-struct 17110 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ress 17204 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17398 df-topn 17399 df-0g 17417 df-gsum 17418 df-topgen 17419 df-pt 17420 df-prds 17423 df-xrs 17478 df-qtop 17483 df-imas 17484 df-xps 17486 df-mre 17560 df-mrc 17561 df-acs 17563 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-submnd 18735 df-mulg 19018 df-cntz 19262 df-cmn 19731 df-psmet 21265 df-xmet 21266 df-met 21267 df-bl 21268 df-mopn 21269 df-cnfld 21274 df-top 22790 df-topon 22807 df-topsp 22829 df-bases 22843 df-ntr 22918 df-cn 23125 df-cnp 23126 df-tx 23460 df-hmeo 23653 df-xms 24220 df-ms 24221 df-tms 24222 df-cncf 24792 df-limc 25789 df-dv 25790 |
This theorem is referenced by: cpnord 25859 dvlipcn 25921 dvlip2 25922 dvivthlem1 25935 lhop1lem 25940 dvfsumlem2 25955 dvfsumlem2OLD 25956 itgsubstlem 25977 taylthlem2 26303 taylthlem2OLD 26304 efcn 26374 pige3ALT 26448 relogcn 26566 atancn 26862 ftc2re 34225 aks4d1p1p5 41541 lhe4.4ex1a 43757 dvmulcncf 45304 dvdivcncf 45306 dvbdfbdioolem1 45307 ioodvbdlimc1lem2 45311 ioodvbdlimc2lem 45313 fourierdlem94 45579 fourierdlem113 45598 fouriercn 45611 |
Copyright terms: Public domain | W3C validator |