Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvle2 Structured version   Visualization version   GIF version

Theorem dvle2 42029
Description: Collapsed dvle 26066. (Contributed by metakunt, 19-Aug-2024.)
Hypotheses
Ref Expression
dvle2.1 (𝜑𝐴 ∈ ℝ)
dvle2.2 (𝜑𝐵 ∈ ℝ)
dvle2.3 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸) ∈ ((𝐴[,]𝐵)–cn→ℝ))
dvle2.4 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺) ∈ ((𝐴[,]𝐵)–cn→ℝ))
dvle2.5 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐸)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐹))
dvle2.6 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐺)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐻))
dvle2.7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐹𝐻)
dvle2.8 (𝑥 = 𝐴𝐸 = 𝑃)
dvle2.9 (𝑥 = 𝐴𝐺 = 𝑄)
dvle2.10 (𝑥 = 𝐵𝐸 = 𝑅)
dvle2.11 (𝑥 = 𝐵𝐺 = 𝑆)
dvle2.12 (𝜑𝑃𝑄)
dvle2.13 (𝜑𝐴𝐵)
Assertion
Ref Expression
dvle2 (𝜑𝑅𝑆)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑃   𝑥,𝑄   𝑥,𝑅   𝑥,𝑆   𝜑,𝑥
Allowed substitution hints:   𝐸(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem dvle2
StepHypRef Expression
1 dvle2.10 . . . . . 6 (𝑥 = 𝐵𝐸 = 𝑅)
21eleq1d 2829 . . . . 5 (𝑥 = 𝐵 → (𝐸 ∈ ℝ ↔ 𝑅 ∈ ℝ))
3 dvle2.3 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸) ∈ ((𝐴[,]𝐵)–cn→ℝ))
4 cncff 24938 . . . . . . 7 ((𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸) ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸):(𝐴[,]𝐵)⟶ℝ)
53, 4syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸):(𝐴[,]𝐵)⟶ℝ)
6 eqid 2740 . . . . . . 7 (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸) = (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸)
76fmpt 7144 . . . . . 6 (∀𝑥 ∈ (𝐴[,]𝐵)𝐸 ∈ ℝ ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸):(𝐴[,]𝐵)⟶ℝ)
85, 7sylibr 234 . . . . 5 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)𝐸 ∈ ℝ)
9 dvle2.2 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
109rexrd 11340 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
11 dvle2.13 . . . . . . 7 (𝜑𝐴𝐵)
129leidd 11856 . . . . . . 7 (𝜑𝐵𝐵)
1310, 11, 123jca 1128 . . . . . 6 (𝜑 → (𝐵 ∈ ℝ*𝐴𝐵𝐵𝐵))
14 dvle2.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
1514rexrd 11340 . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
16 elicc1 13451 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ*𝐴𝐵𝐵𝐵)))
1715, 10, 16syl2anc 583 . . . . . 6 (𝜑 → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ*𝐴𝐵𝐵𝐵)))
1813, 17mpbird 257 . . . . 5 (𝜑𝐵 ∈ (𝐴[,]𝐵))
192, 8, 18rspcdva 3636 . . . 4 (𝜑𝑅 ∈ ℝ)
20 dvle2.8 . . . . . 6 (𝑥 = 𝐴𝐸 = 𝑃)
2120eleq1d 2829 . . . . 5 (𝑥 = 𝐴 → (𝐸 ∈ ℝ ↔ 𝑃 ∈ ℝ))
2214leidd 11856 . . . . . . 7 (𝜑𝐴𝐴)
2315, 22, 113jca 1128 . . . . . 6 (𝜑 → (𝐴 ∈ ℝ*𝐴𝐴𝐴𝐵))
24 elicc1 13451 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 ∈ (𝐴[,]𝐵) ↔ (𝐴 ∈ ℝ*𝐴𝐴𝐴𝐵)))
2515, 10, 24syl2anc 583 . . . . . 6 (𝜑 → (𝐴 ∈ (𝐴[,]𝐵) ↔ (𝐴 ∈ ℝ*𝐴𝐴𝐴𝐵)))
2623, 25mpbird 257 . . . . 5 (𝜑𝐴 ∈ (𝐴[,]𝐵))
2721, 8, 26rspcdva 3636 . . . 4 (𝜑𝑃 ∈ ℝ)
2819, 27resubcld 11718 . . 3 (𝜑 → (𝑅𝑃) ∈ ℝ)
29 dvle2.11 . . . . . 6 (𝑥 = 𝐵𝐺 = 𝑆)
3029eleq1d 2829 . . . . 5 (𝑥 = 𝐵 → (𝐺 ∈ ℝ ↔ 𝑆 ∈ ℝ))
31 dvle2.4 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺) ∈ ((𝐴[,]𝐵)–cn→ℝ))
32 cncff 24938 . . . . . . 7 ((𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺) ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺):(𝐴[,]𝐵)⟶ℝ)
3331, 32syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺):(𝐴[,]𝐵)⟶ℝ)
34 eqid 2740 . . . . . . 7 (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺) = (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺)
3534fmpt 7144 . . . . . 6 (∀𝑥 ∈ (𝐴[,]𝐵)𝐺 ∈ ℝ ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺):(𝐴[,]𝐵)⟶ℝ)
3633, 35sylibr 234 . . . . 5 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)𝐺 ∈ ℝ)
3730, 36, 18rspcdva 3636 . . . 4 (𝜑𝑆 ∈ ℝ)
38 dvle2.9 . . . . . 6 (𝑥 = 𝐴𝐺 = 𝑄)
3938eleq1d 2829 . . . . 5 (𝑥 = 𝐴 → (𝐺 ∈ ℝ ↔ 𝑄 ∈ ℝ))
4039, 36, 26rspcdva 3636 . . . 4 (𝜑𝑄 ∈ ℝ)
4137, 40resubcld 11718 . . 3 (𝜑 → (𝑆𝑄) ∈ ℝ)
42 dvle2.5 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐸)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐹))
43 dvle2.6 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐺)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐻))
44 dvle2.7 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐹𝐻)
4514, 9, 3, 42, 31, 43, 44, 26, 18, 11, 20, 38, 1, 29dvle 26066 . . 3 (𝜑 → (𝑅𝑃) ≤ (𝑆𝑄))
46 dvle2.12 . . 3 (𝜑𝑃𝑄)
4728, 27, 41, 40, 45, 46le2addd 11909 . 2 (𝜑 → ((𝑅𝑃) + 𝑃) ≤ ((𝑆𝑄) + 𝑄))
4819recnd 11318 . . . 4 (𝜑𝑅 ∈ ℂ)
4927recnd 11318 . . . 4 (𝜑𝑃 ∈ ℂ)
5048, 49npcand 11651 . . 3 (𝜑 → ((𝑅𝑃) + 𝑃) = 𝑅)
5137recnd 11318 . . . 4 (𝜑𝑆 ∈ ℂ)
5240recnd 11318 . . . 4 (𝜑𝑄 ∈ ℂ)
5351, 52npcand 11651 . . 3 (𝜑 → ((𝑆𝑄) + 𝑄) = 𝑆)
5450, 53breq12d 5179 . 2 (𝜑 → (((𝑅𝑃) + 𝑃) ≤ ((𝑆𝑄) + 𝑄) ↔ 𝑅𝑆))
5547, 54mpbid 232 1 (𝜑𝑅𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067   class class class wbr 5166  cmpt 5249  wf 6569  (class class class)co 7448  cr 11183   + caddc 11187  *cxr 11323  cle 11325  cmin 11520  (,)cioo 13407  [,]cicc 13410  cnccncf 24921   D cdv 25918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922
This theorem is referenced by:  aks4d1p1p5  42032
  Copyright terms: Public domain W3C validator