![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvle2 | Structured version Visualization version GIF version |
Description: Collapsed dvle 25984. (Contributed by metakunt, 19-Aug-2024.) |
Ref | Expression |
---|---|
dvle2.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
dvle2.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
dvle2.3 | ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
dvle2.4 | ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
dvle2.5 | ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐸)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐹)) |
dvle2.6 | ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐺)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐻)) |
dvle2.7 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐹 ≤ 𝐻) |
dvle2.8 | ⊢ (𝑥 = 𝐴 → 𝐸 = 𝑃) |
dvle2.9 | ⊢ (𝑥 = 𝐴 → 𝐺 = 𝑄) |
dvle2.10 | ⊢ (𝑥 = 𝐵 → 𝐸 = 𝑅) |
dvle2.11 | ⊢ (𝑥 = 𝐵 → 𝐺 = 𝑆) |
dvle2.12 | ⊢ (𝜑 → 𝑃 ≤ 𝑄) |
dvle2.13 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Ref | Expression |
---|---|
dvle2 | ⊢ (𝜑 → 𝑅 ≤ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvle2.10 | . . . . . 6 ⊢ (𝑥 = 𝐵 → 𝐸 = 𝑅) | |
2 | 1 | eleq1d 2810 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐸 ∈ ℝ ↔ 𝑅 ∈ ℝ)) |
3 | dvle2.3 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸) ∈ ((𝐴[,]𝐵)–cn→ℝ)) | |
4 | cncff 24857 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸) ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸):(𝐴[,]𝐵)⟶ℝ) | |
5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸):(𝐴[,]𝐵)⟶ℝ) |
6 | eqid 2725 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸) = (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸) | |
7 | 6 | fmpt 7119 | . . . . . 6 ⊢ (∀𝑥 ∈ (𝐴[,]𝐵)𝐸 ∈ ℝ ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸):(𝐴[,]𝐵)⟶ℝ) |
8 | 5, 7 | sylibr 233 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)𝐸 ∈ ℝ) |
9 | dvle2.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
10 | 9 | rexrd 11296 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
11 | dvle2.13 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
12 | 9 | leidd 11812 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ≤ 𝐵) |
13 | 10, 11, 12 | 3jca 1125 | . . . . . 6 ⊢ (𝜑 → (𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵)) |
14 | dvle2.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
15 | 14 | rexrd 11296 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
16 | elicc1 13403 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵))) | |
17 | 15, 10, 16 | syl2anc 582 | . . . . . 6 ⊢ (𝜑 → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵))) |
18 | 13, 17 | mpbird 256 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐵)) |
19 | 2, 8, 18 | rspcdva 3607 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ ℝ) |
20 | dvle2.8 | . . . . . 6 ⊢ (𝑥 = 𝐴 → 𝐸 = 𝑃) | |
21 | 20 | eleq1d 2810 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐸 ∈ ℝ ↔ 𝑃 ∈ ℝ)) |
22 | 14 | leidd 11812 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
23 | 15, 22, 11 | 3jca 1125 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) |
24 | elicc1 13403 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ∈ (𝐴[,]𝐵) ↔ (𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) | |
25 | 15, 10, 24 | syl2anc 582 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ (𝐴[,]𝐵) ↔ (𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) |
26 | 23, 25 | mpbird 256 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
27 | 21, 8, 26 | rspcdva 3607 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℝ) |
28 | 19, 27 | resubcld 11674 | . . 3 ⊢ (𝜑 → (𝑅 − 𝑃) ∈ ℝ) |
29 | dvle2.11 | . . . . . 6 ⊢ (𝑥 = 𝐵 → 𝐺 = 𝑆) | |
30 | 29 | eleq1d 2810 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐺 ∈ ℝ ↔ 𝑆 ∈ ℝ)) |
31 | dvle2.4 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺) ∈ ((𝐴[,]𝐵)–cn→ℝ)) | |
32 | cncff 24857 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺) ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺):(𝐴[,]𝐵)⟶ℝ) | |
33 | 31, 32 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺):(𝐴[,]𝐵)⟶ℝ) |
34 | eqid 2725 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺) = (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺) | |
35 | 34 | fmpt 7119 | . . . . . 6 ⊢ (∀𝑥 ∈ (𝐴[,]𝐵)𝐺 ∈ ℝ ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺):(𝐴[,]𝐵)⟶ℝ) |
36 | 33, 35 | sylibr 233 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)𝐺 ∈ ℝ) |
37 | 30, 36, 18 | rspcdva 3607 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ ℝ) |
38 | dvle2.9 | . . . . . 6 ⊢ (𝑥 = 𝐴 → 𝐺 = 𝑄) | |
39 | 38 | eleq1d 2810 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐺 ∈ ℝ ↔ 𝑄 ∈ ℝ)) |
40 | 39, 36, 26 | rspcdva 3607 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ ℝ) |
41 | 37, 40 | resubcld 11674 | . . 3 ⊢ (𝜑 → (𝑆 − 𝑄) ∈ ℝ) |
42 | dvle2.5 | . . . 4 ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐸)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐹)) | |
43 | dvle2.6 | . . . 4 ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐺)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐻)) | |
44 | dvle2.7 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐹 ≤ 𝐻) | |
45 | 14, 9, 3, 42, 31, 43, 44, 26, 18, 11, 20, 38, 1, 29 | dvle 25984 | . . 3 ⊢ (𝜑 → (𝑅 − 𝑃) ≤ (𝑆 − 𝑄)) |
46 | dvle2.12 | . . 3 ⊢ (𝜑 → 𝑃 ≤ 𝑄) | |
47 | 28, 27, 41, 40, 45, 46 | le2addd 11865 | . 2 ⊢ (𝜑 → ((𝑅 − 𝑃) + 𝑃) ≤ ((𝑆 − 𝑄) + 𝑄)) |
48 | 19 | recnd 11274 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ ℂ) |
49 | 27 | recnd 11274 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
50 | 48, 49 | npcand 11607 | . . 3 ⊢ (𝜑 → ((𝑅 − 𝑃) + 𝑃) = 𝑅) |
51 | 37 | recnd 11274 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ ℂ) |
52 | 40 | recnd 11274 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ ℂ) |
53 | 51, 52 | npcand 11607 | . . 3 ⊢ (𝜑 → ((𝑆 − 𝑄) + 𝑄) = 𝑆) |
54 | 50, 53 | breq12d 5162 | . 2 ⊢ (𝜑 → (((𝑅 − 𝑃) + 𝑃) ≤ ((𝑆 − 𝑄) + 𝑄) ↔ 𝑅 ≤ 𝑆)) |
55 | 47, 54 | mpbid 231 | 1 ⊢ (𝜑 → 𝑅 ≤ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3050 class class class wbr 5149 ↦ cmpt 5232 ⟶wf 6545 (class class class)co 7419 ℝcr 11139 + caddc 11143 ℝ*cxr 11279 ≤ cle 11281 − cmin 11476 (,)cioo 13359 [,]cicc 13362 –cn→ccncf 24840 D cdv 25836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 ax-addf 11219 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-of 7685 df-om 7872 df-1st 7994 df-2nd 7995 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8725 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9388 df-fi 9436 df-sup 9467 df-inf 9468 df-oi 9535 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-dec 12711 df-uz 12856 df-q 12966 df-rp 13010 df-xneg 13127 df-xadd 13128 df-xmul 13129 df-ioo 13363 df-ico 13365 df-icc 13366 df-fz 13520 df-fzo 13663 df-seq 14003 df-exp 14063 df-hash 14326 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-struct 17119 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-mulr 17250 df-starv 17251 df-sca 17252 df-vsca 17253 df-ip 17254 df-tset 17255 df-ple 17256 df-ds 17258 df-unif 17259 df-hom 17260 df-cco 17261 df-rest 17407 df-topn 17408 df-0g 17426 df-gsum 17427 df-topgen 17428 df-pt 17429 df-prds 17432 df-xrs 17487 df-qtop 17492 df-imas 17493 df-xps 17495 df-mre 17569 df-mrc 17570 df-acs 17572 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-submnd 18744 df-mulg 19032 df-cntz 19280 df-cmn 19749 df-psmet 21288 df-xmet 21289 df-met 21290 df-bl 21291 df-mopn 21292 df-fbas 21293 df-fg 21294 df-cnfld 21297 df-top 22840 df-topon 22857 df-topsp 22879 df-bases 22893 df-cld 22967 df-ntr 22968 df-cls 22969 df-nei 23046 df-lp 23084 df-perf 23085 df-cn 23175 df-cnp 23176 df-haus 23263 df-cmp 23335 df-tx 23510 df-hmeo 23703 df-fil 23794 df-fm 23886 df-flim 23887 df-flf 23888 df-xms 24270 df-ms 24271 df-tms 24272 df-cncf 24842 df-limc 25839 df-dv 25840 |
This theorem is referenced by: aks4d1p1p5 41678 |
Copyright terms: Public domain | W3C validator |