| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvle2 | Structured version Visualization version GIF version | ||
| Description: Collapsed dvle 25934. (Contributed by metakunt, 19-Aug-2024.) |
| Ref | Expression |
|---|---|
| dvle2.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| dvle2.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| dvle2.3 | ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
| dvle2.4 | ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
| dvle2.5 | ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐸)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐹)) |
| dvle2.6 | ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐺)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐻)) |
| dvle2.7 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐹 ≤ 𝐻) |
| dvle2.8 | ⊢ (𝑥 = 𝐴 → 𝐸 = 𝑃) |
| dvle2.9 | ⊢ (𝑥 = 𝐴 → 𝐺 = 𝑄) |
| dvle2.10 | ⊢ (𝑥 = 𝐵 → 𝐸 = 𝑅) |
| dvle2.11 | ⊢ (𝑥 = 𝐵 → 𝐺 = 𝑆) |
| dvle2.12 | ⊢ (𝜑 → 𝑃 ≤ 𝑄) |
| dvle2.13 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| dvle2 | ⊢ (𝜑 → 𝑅 ≤ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvle2.10 | . . . . . 6 ⊢ (𝑥 = 𝐵 → 𝐸 = 𝑅) | |
| 2 | 1 | eleq1d 2816 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐸 ∈ ℝ ↔ 𝑅 ∈ ℝ)) |
| 3 | dvle2.3 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸) ∈ ((𝐴[,]𝐵)–cn→ℝ)) | |
| 4 | cncff 24808 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸) ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸):(𝐴[,]𝐵)⟶ℝ) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸):(𝐴[,]𝐵)⟶ℝ) |
| 6 | eqid 2731 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸) = (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸) | |
| 7 | 6 | fmpt 7038 | . . . . . 6 ⊢ (∀𝑥 ∈ (𝐴[,]𝐵)𝐸 ∈ ℝ ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸):(𝐴[,]𝐵)⟶ℝ) |
| 8 | 5, 7 | sylibr 234 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)𝐸 ∈ ℝ) |
| 9 | dvle2.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 10 | 9 | rexrd 11157 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| 11 | dvle2.13 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 12 | 9 | leidd 11678 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ≤ 𝐵) |
| 13 | 10, 11, 12 | 3jca 1128 | . . . . . 6 ⊢ (𝜑 → (𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵)) |
| 14 | dvle2.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 15 | 14 | rexrd 11157 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| 16 | elicc1 13284 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵))) | |
| 17 | 15, 10, 16 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵))) |
| 18 | 13, 17 | mpbird 257 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐵)) |
| 19 | 2, 8, 18 | rspcdva 3573 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ ℝ) |
| 20 | dvle2.8 | . . . . . 6 ⊢ (𝑥 = 𝐴 → 𝐸 = 𝑃) | |
| 21 | 20 | eleq1d 2816 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐸 ∈ ℝ ↔ 𝑃 ∈ ℝ)) |
| 22 | 14 | leidd 11678 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
| 23 | 15, 22, 11 | 3jca 1128 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) |
| 24 | elicc1 13284 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ∈ (𝐴[,]𝐵) ↔ (𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) | |
| 25 | 15, 10, 24 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ (𝐴[,]𝐵) ↔ (𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) |
| 26 | 23, 25 | mpbird 257 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
| 27 | 21, 8, 26 | rspcdva 3573 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℝ) |
| 28 | 19, 27 | resubcld 11540 | . . 3 ⊢ (𝜑 → (𝑅 − 𝑃) ∈ ℝ) |
| 29 | dvle2.11 | . . . . . 6 ⊢ (𝑥 = 𝐵 → 𝐺 = 𝑆) | |
| 30 | 29 | eleq1d 2816 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐺 ∈ ℝ ↔ 𝑆 ∈ ℝ)) |
| 31 | dvle2.4 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺) ∈ ((𝐴[,]𝐵)–cn→ℝ)) | |
| 32 | cncff 24808 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺) ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺):(𝐴[,]𝐵)⟶ℝ) | |
| 33 | 31, 32 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺):(𝐴[,]𝐵)⟶ℝ) |
| 34 | eqid 2731 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺) = (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺) | |
| 35 | 34 | fmpt 7038 | . . . . . 6 ⊢ (∀𝑥 ∈ (𝐴[,]𝐵)𝐺 ∈ ℝ ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺):(𝐴[,]𝐵)⟶ℝ) |
| 36 | 33, 35 | sylibr 234 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)𝐺 ∈ ℝ) |
| 37 | 30, 36, 18 | rspcdva 3573 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ ℝ) |
| 38 | dvle2.9 | . . . . . 6 ⊢ (𝑥 = 𝐴 → 𝐺 = 𝑄) | |
| 39 | 38 | eleq1d 2816 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐺 ∈ ℝ ↔ 𝑄 ∈ ℝ)) |
| 40 | 39, 36, 26 | rspcdva 3573 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ ℝ) |
| 41 | 37, 40 | resubcld 11540 | . . 3 ⊢ (𝜑 → (𝑆 − 𝑄) ∈ ℝ) |
| 42 | dvle2.5 | . . . 4 ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐸)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐹)) | |
| 43 | dvle2.6 | . . . 4 ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐺)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐻)) | |
| 44 | dvle2.7 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐹 ≤ 𝐻) | |
| 45 | 14, 9, 3, 42, 31, 43, 44, 26, 18, 11, 20, 38, 1, 29 | dvle 25934 | . . 3 ⊢ (𝜑 → (𝑅 − 𝑃) ≤ (𝑆 − 𝑄)) |
| 46 | dvle2.12 | . . 3 ⊢ (𝜑 → 𝑃 ≤ 𝑄) | |
| 47 | 28, 27, 41, 40, 45, 46 | le2addd 11731 | . 2 ⊢ (𝜑 → ((𝑅 − 𝑃) + 𝑃) ≤ ((𝑆 − 𝑄) + 𝑄)) |
| 48 | 19 | recnd 11135 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ ℂ) |
| 49 | 27 | recnd 11135 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
| 50 | 48, 49 | npcand 11471 | . . 3 ⊢ (𝜑 → ((𝑅 − 𝑃) + 𝑃) = 𝑅) |
| 51 | 37 | recnd 11135 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ ℂ) |
| 52 | 40 | recnd 11135 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ ℂ) |
| 53 | 51, 52 | npcand 11471 | . . 3 ⊢ (𝜑 → ((𝑆 − 𝑄) + 𝑄) = 𝑆) |
| 54 | 50, 53 | breq12d 5099 | . 2 ⊢ (𝜑 → (((𝑅 − 𝑃) + 𝑃) ≤ ((𝑆 − 𝑄) + 𝑄) ↔ 𝑅 ≤ 𝑆)) |
| 55 | 47, 54 | mpbid 232 | 1 ⊢ (𝜑 → 𝑅 ≤ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 class class class wbr 5086 ↦ cmpt 5167 ⟶wf 6472 (class class class)co 7341 ℝcr 11000 + caddc 11004 ℝ*cxr 11140 ≤ cle 11142 − cmin 11339 (,)cioo 13240 [,]cicc 13243 –cn→ccncf 24791 D cdv 25786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 ax-addf 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-q 12842 df-rp 12886 df-xneg 13006 df-xadd 13007 df-xmul 13008 df-ioo 13244 df-ico 13246 df-icc 13247 df-fz 13403 df-fzo 13550 df-seq 13904 df-exp 13964 df-hash 14233 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-starv 17171 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-unif 17179 df-hom 17180 df-cco 17181 df-rest 17321 df-topn 17322 df-0g 17340 df-gsum 17341 df-topgen 17342 df-pt 17343 df-prds 17346 df-xrs 17401 df-qtop 17406 df-imas 17407 df-xps 17409 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-mulg 18976 df-cntz 19224 df-cmn 19689 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-fbas 21283 df-fg 21284 df-cnfld 21287 df-top 22804 df-topon 22821 df-topsp 22843 df-bases 22856 df-cld 22929 df-ntr 22930 df-cls 22931 df-nei 23008 df-lp 23046 df-perf 23047 df-cn 23137 df-cnp 23138 df-haus 23225 df-cmp 23297 df-tx 23472 df-hmeo 23665 df-fil 23756 df-fm 23848 df-flim 23849 df-flf 23850 df-xms 24230 df-ms 24231 df-tms 24232 df-cncf 24793 df-limc 25789 df-dv 25790 |
| This theorem is referenced by: aks4d1p1p5 42108 |
| Copyright terms: Public domain | W3C validator |