| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvle2 | Structured version Visualization version GIF version | ||
| Description: Collapsed dvle 25912. (Contributed by metakunt, 19-Aug-2024.) |
| Ref | Expression |
|---|---|
| dvle2.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| dvle2.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| dvle2.3 | ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
| dvle2.4 | ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
| dvle2.5 | ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐸)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐹)) |
| dvle2.6 | ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐺)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐻)) |
| dvle2.7 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐹 ≤ 𝐻) |
| dvle2.8 | ⊢ (𝑥 = 𝐴 → 𝐸 = 𝑃) |
| dvle2.9 | ⊢ (𝑥 = 𝐴 → 𝐺 = 𝑄) |
| dvle2.10 | ⊢ (𝑥 = 𝐵 → 𝐸 = 𝑅) |
| dvle2.11 | ⊢ (𝑥 = 𝐵 → 𝐺 = 𝑆) |
| dvle2.12 | ⊢ (𝜑 → 𝑃 ≤ 𝑄) |
| dvle2.13 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| dvle2 | ⊢ (𝜑 → 𝑅 ≤ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvle2.10 | . . . . . 6 ⊢ (𝑥 = 𝐵 → 𝐸 = 𝑅) | |
| 2 | 1 | eleq1d 2813 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐸 ∈ ℝ ↔ 𝑅 ∈ ℝ)) |
| 3 | dvle2.3 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸) ∈ ((𝐴[,]𝐵)–cn→ℝ)) | |
| 4 | cncff 24786 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸) ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸):(𝐴[,]𝐵)⟶ℝ) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸):(𝐴[,]𝐵)⟶ℝ) |
| 6 | eqid 2729 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸) = (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸) | |
| 7 | 6 | fmpt 7082 | . . . . . 6 ⊢ (∀𝑥 ∈ (𝐴[,]𝐵)𝐸 ∈ ℝ ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸):(𝐴[,]𝐵)⟶ℝ) |
| 8 | 5, 7 | sylibr 234 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)𝐸 ∈ ℝ) |
| 9 | dvle2.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 10 | 9 | rexrd 11224 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| 11 | dvle2.13 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 12 | 9 | leidd 11744 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ≤ 𝐵) |
| 13 | 10, 11, 12 | 3jca 1128 | . . . . . 6 ⊢ (𝜑 → (𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵)) |
| 14 | dvle2.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 15 | 14 | rexrd 11224 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| 16 | elicc1 13350 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵))) | |
| 17 | 15, 10, 16 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵))) |
| 18 | 13, 17 | mpbird 257 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐵)) |
| 19 | 2, 8, 18 | rspcdva 3589 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ ℝ) |
| 20 | dvle2.8 | . . . . . 6 ⊢ (𝑥 = 𝐴 → 𝐸 = 𝑃) | |
| 21 | 20 | eleq1d 2813 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐸 ∈ ℝ ↔ 𝑃 ∈ ℝ)) |
| 22 | 14 | leidd 11744 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
| 23 | 15, 22, 11 | 3jca 1128 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) |
| 24 | elicc1 13350 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ∈ (𝐴[,]𝐵) ↔ (𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) | |
| 25 | 15, 10, 24 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ (𝐴[,]𝐵) ↔ (𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) |
| 26 | 23, 25 | mpbird 257 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
| 27 | 21, 8, 26 | rspcdva 3589 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℝ) |
| 28 | 19, 27 | resubcld 11606 | . . 3 ⊢ (𝜑 → (𝑅 − 𝑃) ∈ ℝ) |
| 29 | dvle2.11 | . . . . . 6 ⊢ (𝑥 = 𝐵 → 𝐺 = 𝑆) | |
| 30 | 29 | eleq1d 2813 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐺 ∈ ℝ ↔ 𝑆 ∈ ℝ)) |
| 31 | dvle2.4 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺) ∈ ((𝐴[,]𝐵)–cn→ℝ)) | |
| 32 | cncff 24786 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺) ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺):(𝐴[,]𝐵)⟶ℝ) | |
| 33 | 31, 32 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺):(𝐴[,]𝐵)⟶ℝ) |
| 34 | eqid 2729 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺) = (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺) | |
| 35 | 34 | fmpt 7082 | . . . . . 6 ⊢ (∀𝑥 ∈ (𝐴[,]𝐵)𝐺 ∈ ℝ ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺):(𝐴[,]𝐵)⟶ℝ) |
| 36 | 33, 35 | sylibr 234 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)𝐺 ∈ ℝ) |
| 37 | 30, 36, 18 | rspcdva 3589 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ ℝ) |
| 38 | dvle2.9 | . . . . . 6 ⊢ (𝑥 = 𝐴 → 𝐺 = 𝑄) | |
| 39 | 38 | eleq1d 2813 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐺 ∈ ℝ ↔ 𝑄 ∈ ℝ)) |
| 40 | 39, 36, 26 | rspcdva 3589 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ ℝ) |
| 41 | 37, 40 | resubcld 11606 | . . 3 ⊢ (𝜑 → (𝑆 − 𝑄) ∈ ℝ) |
| 42 | dvle2.5 | . . . 4 ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐸)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐹)) | |
| 43 | dvle2.6 | . . . 4 ⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐺)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐻)) | |
| 44 | dvle2.7 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐹 ≤ 𝐻) | |
| 45 | 14, 9, 3, 42, 31, 43, 44, 26, 18, 11, 20, 38, 1, 29 | dvle 25912 | . . 3 ⊢ (𝜑 → (𝑅 − 𝑃) ≤ (𝑆 − 𝑄)) |
| 46 | dvle2.12 | . . 3 ⊢ (𝜑 → 𝑃 ≤ 𝑄) | |
| 47 | 28, 27, 41, 40, 45, 46 | le2addd 11797 | . 2 ⊢ (𝜑 → ((𝑅 − 𝑃) + 𝑃) ≤ ((𝑆 − 𝑄) + 𝑄)) |
| 48 | 19 | recnd 11202 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ ℂ) |
| 49 | 27 | recnd 11202 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
| 50 | 48, 49 | npcand 11537 | . . 3 ⊢ (𝜑 → ((𝑅 − 𝑃) + 𝑃) = 𝑅) |
| 51 | 37 | recnd 11202 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ ℂ) |
| 52 | 40 | recnd 11202 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ ℂ) |
| 53 | 51, 52 | npcand 11537 | . . 3 ⊢ (𝜑 → ((𝑆 − 𝑄) + 𝑄) = 𝑆) |
| 54 | 50, 53 | breq12d 5120 | . 2 ⊢ (𝜑 → (((𝑅 − 𝑃) + 𝑃) ≤ ((𝑆 − 𝑄) + 𝑄) ↔ 𝑅 ≤ 𝑆)) |
| 55 | 47, 54 | mpbid 232 | 1 ⊢ (𝜑 → 𝑅 ≤ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 class class class wbr 5107 ↦ cmpt 5188 ⟶wf 6507 (class class class)co 7387 ℝcr 11067 + caddc 11071 ℝ*cxr 11207 ≤ cle 11209 − cmin 11405 (,)cioo 13306 [,]cicc 13309 –cn→ccncf 24769 D cdv 25764 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-pt 17407 df-prds 17410 df-xrs 17465 df-qtop 17470 df-imas 17471 df-xps 17473 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-mulg 19000 df-cntz 19249 df-cmn 19712 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-lp 23023 df-perf 23024 df-cn 23114 df-cnp 23115 df-haus 23202 df-cmp 23274 df-tx 23449 df-hmeo 23642 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-xms 24208 df-ms 24209 df-tms 24210 df-cncf 24771 df-limc 25767 df-dv 25768 |
| This theorem is referenced by: aks4d1p1p5 42063 |
| Copyright terms: Public domain | W3C validator |