![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvle2 | Structured version Visualization version GIF version |
Description: Collapsed dvle 25515. (Contributed by metakunt, 19-Aug-2024.) |
Ref | Expression |
---|---|
dvle2.1 | β’ (π β π΄ β β) |
dvle2.2 | β’ (π β π΅ β β) |
dvle2.3 | β’ (π β (π₯ β (π΄[,]π΅) β¦ πΈ) β ((π΄[,]π΅)βcnββ)) |
dvle2.4 | β’ (π β (π₯ β (π΄[,]π΅) β¦ πΊ) β ((π΄[,]π΅)βcnββ)) |
dvle2.5 | β’ (π β (β D (π₯ β (π΄(,)π΅) β¦ πΈ)) = (π₯ β (π΄(,)π΅) β¦ πΉ)) |
dvle2.6 | β’ (π β (β D (π₯ β (π΄(,)π΅) β¦ πΊ)) = (π₯ β (π΄(,)π΅) β¦ π»)) |
dvle2.7 | β’ ((π β§ π₯ β (π΄(,)π΅)) β πΉ β€ π») |
dvle2.8 | β’ (π₯ = π΄ β πΈ = π) |
dvle2.9 | β’ (π₯ = π΄ β πΊ = π) |
dvle2.10 | β’ (π₯ = π΅ β πΈ = π ) |
dvle2.11 | β’ (π₯ = π΅ β πΊ = π) |
dvle2.12 | β’ (π β π β€ π) |
dvle2.13 | β’ (π β π΄ β€ π΅) |
Ref | Expression |
---|---|
dvle2 | β’ (π β π β€ π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvle2.10 | . . . . . 6 β’ (π₯ = π΅ β πΈ = π ) | |
2 | 1 | eleq1d 2818 | . . . . 5 β’ (π₯ = π΅ β (πΈ β β β π β β)) |
3 | dvle2.3 | . . . . . . 7 β’ (π β (π₯ β (π΄[,]π΅) β¦ πΈ) β ((π΄[,]π΅)βcnββ)) | |
4 | cncff 24400 | . . . . . . 7 β’ ((π₯ β (π΄[,]π΅) β¦ πΈ) β ((π΄[,]π΅)βcnββ) β (π₯ β (π΄[,]π΅) β¦ πΈ):(π΄[,]π΅)βΆβ) | |
5 | 3, 4 | syl 17 | . . . . . 6 β’ (π β (π₯ β (π΄[,]π΅) β¦ πΈ):(π΄[,]π΅)βΆβ) |
6 | eqid 2732 | . . . . . . 7 β’ (π₯ β (π΄[,]π΅) β¦ πΈ) = (π₯ β (π΄[,]π΅) β¦ πΈ) | |
7 | 6 | fmpt 7106 | . . . . . 6 β’ (βπ₯ β (π΄[,]π΅)πΈ β β β (π₯ β (π΄[,]π΅) β¦ πΈ):(π΄[,]π΅)βΆβ) |
8 | 5, 7 | sylibr 233 | . . . . 5 β’ (π β βπ₯ β (π΄[,]π΅)πΈ β β) |
9 | dvle2.2 | . . . . . . . 8 β’ (π β π΅ β β) | |
10 | 9 | rexrd 11260 | . . . . . . 7 β’ (π β π΅ β β*) |
11 | dvle2.13 | . . . . . . 7 β’ (π β π΄ β€ π΅) | |
12 | 9 | leidd 11776 | . . . . . . 7 β’ (π β π΅ β€ π΅) |
13 | 10, 11, 12 | 3jca 1128 | . . . . . 6 β’ (π β (π΅ β β* β§ π΄ β€ π΅ β§ π΅ β€ π΅)) |
14 | dvle2.1 | . . . . . . . 8 β’ (π β π΄ β β) | |
15 | 14 | rexrd 11260 | . . . . . . 7 β’ (π β π΄ β β*) |
16 | elicc1 13364 | . . . . . . 7 β’ ((π΄ β β* β§ π΅ β β*) β (π΅ β (π΄[,]π΅) β (π΅ β β* β§ π΄ β€ π΅ β§ π΅ β€ π΅))) | |
17 | 15, 10, 16 | syl2anc 584 | . . . . . 6 β’ (π β (π΅ β (π΄[,]π΅) β (π΅ β β* β§ π΄ β€ π΅ β§ π΅ β€ π΅))) |
18 | 13, 17 | mpbird 256 | . . . . 5 β’ (π β π΅ β (π΄[,]π΅)) |
19 | 2, 8, 18 | rspcdva 3613 | . . . 4 β’ (π β π β β) |
20 | dvle2.8 | . . . . . 6 β’ (π₯ = π΄ β πΈ = π) | |
21 | 20 | eleq1d 2818 | . . . . 5 β’ (π₯ = π΄ β (πΈ β β β π β β)) |
22 | 14 | leidd 11776 | . . . . . . 7 β’ (π β π΄ β€ π΄) |
23 | 15, 22, 11 | 3jca 1128 | . . . . . 6 β’ (π β (π΄ β β* β§ π΄ β€ π΄ β§ π΄ β€ π΅)) |
24 | elicc1 13364 | . . . . . . 7 β’ ((π΄ β β* β§ π΅ β β*) β (π΄ β (π΄[,]π΅) β (π΄ β β* β§ π΄ β€ π΄ β§ π΄ β€ π΅))) | |
25 | 15, 10, 24 | syl2anc 584 | . . . . . 6 β’ (π β (π΄ β (π΄[,]π΅) β (π΄ β β* β§ π΄ β€ π΄ β§ π΄ β€ π΅))) |
26 | 23, 25 | mpbird 256 | . . . . 5 β’ (π β π΄ β (π΄[,]π΅)) |
27 | 21, 8, 26 | rspcdva 3613 | . . . 4 β’ (π β π β β) |
28 | 19, 27 | resubcld 11638 | . . 3 β’ (π β (π β π) β β) |
29 | dvle2.11 | . . . . . 6 β’ (π₯ = π΅ β πΊ = π) | |
30 | 29 | eleq1d 2818 | . . . . 5 β’ (π₯ = π΅ β (πΊ β β β π β β)) |
31 | dvle2.4 | . . . . . . 7 β’ (π β (π₯ β (π΄[,]π΅) β¦ πΊ) β ((π΄[,]π΅)βcnββ)) | |
32 | cncff 24400 | . . . . . . 7 β’ ((π₯ β (π΄[,]π΅) β¦ πΊ) β ((π΄[,]π΅)βcnββ) β (π₯ β (π΄[,]π΅) β¦ πΊ):(π΄[,]π΅)βΆβ) | |
33 | 31, 32 | syl 17 | . . . . . 6 β’ (π β (π₯ β (π΄[,]π΅) β¦ πΊ):(π΄[,]π΅)βΆβ) |
34 | eqid 2732 | . . . . . . 7 β’ (π₯ β (π΄[,]π΅) β¦ πΊ) = (π₯ β (π΄[,]π΅) β¦ πΊ) | |
35 | 34 | fmpt 7106 | . . . . . 6 β’ (βπ₯ β (π΄[,]π΅)πΊ β β β (π₯ β (π΄[,]π΅) β¦ πΊ):(π΄[,]π΅)βΆβ) |
36 | 33, 35 | sylibr 233 | . . . . 5 β’ (π β βπ₯ β (π΄[,]π΅)πΊ β β) |
37 | 30, 36, 18 | rspcdva 3613 | . . . 4 β’ (π β π β β) |
38 | dvle2.9 | . . . . . 6 β’ (π₯ = π΄ β πΊ = π) | |
39 | 38 | eleq1d 2818 | . . . . 5 β’ (π₯ = π΄ β (πΊ β β β π β β)) |
40 | 39, 36, 26 | rspcdva 3613 | . . . 4 β’ (π β π β β) |
41 | 37, 40 | resubcld 11638 | . . 3 β’ (π β (π β π) β β) |
42 | dvle2.5 | . . . 4 β’ (π β (β D (π₯ β (π΄(,)π΅) β¦ πΈ)) = (π₯ β (π΄(,)π΅) β¦ πΉ)) | |
43 | dvle2.6 | . . . 4 β’ (π β (β D (π₯ β (π΄(,)π΅) β¦ πΊ)) = (π₯ β (π΄(,)π΅) β¦ π»)) | |
44 | dvle2.7 | . . . 4 β’ ((π β§ π₯ β (π΄(,)π΅)) β πΉ β€ π») | |
45 | 14, 9, 3, 42, 31, 43, 44, 26, 18, 11, 20, 38, 1, 29 | dvle 25515 | . . 3 β’ (π β (π β π) β€ (π β π)) |
46 | dvle2.12 | . . 3 β’ (π β π β€ π) | |
47 | 28, 27, 41, 40, 45, 46 | le2addd 11829 | . 2 β’ (π β ((π β π) + π) β€ ((π β π) + π)) |
48 | 19 | recnd 11238 | . . . 4 β’ (π β π β β) |
49 | 27 | recnd 11238 | . . . 4 β’ (π β π β β) |
50 | 48, 49 | npcand 11571 | . . 3 β’ (π β ((π β π) + π) = π ) |
51 | 37 | recnd 11238 | . . . 4 β’ (π β π β β) |
52 | 40 | recnd 11238 | . . . 4 β’ (π β π β β) |
53 | 51, 52 | npcand 11571 | . . 3 β’ (π β ((π β π) + π) = π) |
54 | 50, 53 | breq12d 5160 | . 2 β’ (π β (((π β π) + π) β€ ((π β π) + π) β π β€ π)) |
55 | 47, 54 | mpbid 231 | 1 β’ (π β π β€ π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 βwral 3061 class class class wbr 5147 β¦ cmpt 5230 βΆwf 6536 (class class class)co 7405 βcr 11105 + caddc 11109 β*cxr 11243 β€ cle 11245 β cmin 11440 (,)cioo 13320 [,]cicc 13323 βcnβccncf 24383 D cdv 25371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-er 8699 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-fi 9402 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-ioo 13324 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-starv 17208 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-hom 17217 df-cco 17218 df-rest 17364 df-topn 17365 df-0g 17383 df-gsum 17384 df-topgen 17385 df-pt 17386 df-prds 17389 df-xrs 17444 df-qtop 17449 df-imas 17450 df-xps 17452 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-submnd 18668 df-mulg 18945 df-cntz 19175 df-cmn 19644 df-psmet 20928 df-xmet 20929 df-met 20930 df-bl 20931 df-mopn 20932 df-fbas 20933 df-fg 20934 df-cnfld 20937 df-top 22387 df-topon 22404 df-topsp 22426 df-bases 22440 df-cld 22514 df-ntr 22515 df-cls 22516 df-nei 22593 df-lp 22631 df-perf 22632 df-cn 22722 df-cnp 22723 df-haus 22810 df-cmp 22882 df-tx 23057 df-hmeo 23250 df-fil 23341 df-fm 23433 df-flim 23434 df-flf 23435 df-xms 23817 df-ms 23818 df-tms 23819 df-cncf 24385 df-limc 25374 df-dv 25375 |
This theorem is referenced by: aks4d1p1p5 40928 |
Copyright terms: Public domain | W3C validator |