Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvle2 Structured version   Visualization version   GIF version

Theorem dvle2 42060
Description: Collapsed dvle 25912. (Contributed by metakunt, 19-Aug-2024.)
Hypotheses
Ref Expression
dvle2.1 (𝜑𝐴 ∈ ℝ)
dvle2.2 (𝜑𝐵 ∈ ℝ)
dvle2.3 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸) ∈ ((𝐴[,]𝐵)–cn→ℝ))
dvle2.4 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺) ∈ ((𝐴[,]𝐵)–cn→ℝ))
dvle2.5 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐸)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐹))
dvle2.6 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐺)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐻))
dvle2.7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐹𝐻)
dvle2.8 (𝑥 = 𝐴𝐸 = 𝑃)
dvle2.9 (𝑥 = 𝐴𝐺 = 𝑄)
dvle2.10 (𝑥 = 𝐵𝐸 = 𝑅)
dvle2.11 (𝑥 = 𝐵𝐺 = 𝑆)
dvle2.12 (𝜑𝑃𝑄)
dvle2.13 (𝜑𝐴𝐵)
Assertion
Ref Expression
dvle2 (𝜑𝑅𝑆)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑃   𝑥,𝑄   𝑥,𝑅   𝑥,𝑆   𝜑,𝑥
Allowed substitution hints:   𝐸(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem dvle2
StepHypRef Expression
1 dvle2.10 . . . . . 6 (𝑥 = 𝐵𝐸 = 𝑅)
21eleq1d 2813 . . . . 5 (𝑥 = 𝐵 → (𝐸 ∈ ℝ ↔ 𝑅 ∈ ℝ))
3 dvle2.3 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸) ∈ ((𝐴[,]𝐵)–cn→ℝ))
4 cncff 24786 . . . . . . 7 ((𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸) ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸):(𝐴[,]𝐵)⟶ℝ)
53, 4syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸):(𝐴[,]𝐵)⟶ℝ)
6 eqid 2729 . . . . . . 7 (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸) = (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸)
76fmpt 7082 . . . . . 6 (∀𝑥 ∈ (𝐴[,]𝐵)𝐸 ∈ ℝ ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸):(𝐴[,]𝐵)⟶ℝ)
85, 7sylibr 234 . . . . 5 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)𝐸 ∈ ℝ)
9 dvle2.2 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
109rexrd 11224 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
11 dvle2.13 . . . . . . 7 (𝜑𝐴𝐵)
129leidd 11744 . . . . . . 7 (𝜑𝐵𝐵)
1310, 11, 123jca 1128 . . . . . 6 (𝜑 → (𝐵 ∈ ℝ*𝐴𝐵𝐵𝐵))
14 dvle2.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
1514rexrd 11224 . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
16 elicc1 13350 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ*𝐴𝐵𝐵𝐵)))
1715, 10, 16syl2anc 584 . . . . . 6 (𝜑 → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ*𝐴𝐵𝐵𝐵)))
1813, 17mpbird 257 . . . . 5 (𝜑𝐵 ∈ (𝐴[,]𝐵))
192, 8, 18rspcdva 3589 . . . 4 (𝜑𝑅 ∈ ℝ)
20 dvle2.8 . . . . . 6 (𝑥 = 𝐴𝐸 = 𝑃)
2120eleq1d 2813 . . . . 5 (𝑥 = 𝐴 → (𝐸 ∈ ℝ ↔ 𝑃 ∈ ℝ))
2214leidd 11744 . . . . . . 7 (𝜑𝐴𝐴)
2315, 22, 113jca 1128 . . . . . 6 (𝜑 → (𝐴 ∈ ℝ*𝐴𝐴𝐴𝐵))
24 elicc1 13350 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 ∈ (𝐴[,]𝐵) ↔ (𝐴 ∈ ℝ*𝐴𝐴𝐴𝐵)))
2515, 10, 24syl2anc 584 . . . . . 6 (𝜑 → (𝐴 ∈ (𝐴[,]𝐵) ↔ (𝐴 ∈ ℝ*𝐴𝐴𝐴𝐵)))
2623, 25mpbird 257 . . . . 5 (𝜑𝐴 ∈ (𝐴[,]𝐵))
2721, 8, 26rspcdva 3589 . . . 4 (𝜑𝑃 ∈ ℝ)
2819, 27resubcld 11606 . . 3 (𝜑 → (𝑅𝑃) ∈ ℝ)
29 dvle2.11 . . . . . 6 (𝑥 = 𝐵𝐺 = 𝑆)
3029eleq1d 2813 . . . . 5 (𝑥 = 𝐵 → (𝐺 ∈ ℝ ↔ 𝑆 ∈ ℝ))
31 dvle2.4 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺) ∈ ((𝐴[,]𝐵)–cn→ℝ))
32 cncff 24786 . . . . . . 7 ((𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺) ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺):(𝐴[,]𝐵)⟶ℝ)
3331, 32syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺):(𝐴[,]𝐵)⟶ℝ)
34 eqid 2729 . . . . . . 7 (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺) = (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺)
3534fmpt 7082 . . . . . 6 (∀𝑥 ∈ (𝐴[,]𝐵)𝐺 ∈ ℝ ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺):(𝐴[,]𝐵)⟶ℝ)
3633, 35sylibr 234 . . . . 5 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)𝐺 ∈ ℝ)
3730, 36, 18rspcdva 3589 . . . 4 (𝜑𝑆 ∈ ℝ)
38 dvle2.9 . . . . . 6 (𝑥 = 𝐴𝐺 = 𝑄)
3938eleq1d 2813 . . . . 5 (𝑥 = 𝐴 → (𝐺 ∈ ℝ ↔ 𝑄 ∈ ℝ))
4039, 36, 26rspcdva 3589 . . . 4 (𝜑𝑄 ∈ ℝ)
4137, 40resubcld 11606 . . 3 (𝜑 → (𝑆𝑄) ∈ ℝ)
42 dvle2.5 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐸)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐹))
43 dvle2.6 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐺)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐻))
44 dvle2.7 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐹𝐻)
4514, 9, 3, 42, 31, 43, 44, 26, 18, 11, 20, 38, 1, 29dvle 25912 . . 3 (𝜑 → (𝑅𝑃) ≤ (𝑆𝑄))
46 dvle2.12 . . 3 (𝜑𝑃𝑄)
4728, 27, 41, 40, 45, 46le2addd 11797 . 2 (𝜑 → ((𝑅𝑃) + 𝑃) ≤ ((𝑆𝑄) + 𝑄))
4819recnd 11202 . . . 4 (𝜑𝑅 ∈ ℂ)
4927recnd 11202 . . . 4 (𝜑𝑃 ∈ ℂ)
5048, 49npcand 11537 . . 3 (𝜑 → ((𝑅𝑃) + 𝑃) = 𝑅)
5137recnd 11202 . . . 4 (𝜑𝑆 ∈ ℂ)
5240recnd 11202 . . . 4 (𝜑𝑄 ∈ ℂ)
5351, 52npcand 11537 . . 3 (𝜑 → ((𝑆𝑄) + 𝑄) = 𝑆)
5450, 53breq12d 5120 . 2 (𝜑 → (((𝑅𝑃) + 𝑃) ≤ ((𝑆𝑄) + 𝑄) ↔ 𝑅𝑆))
5547, 54mpbid 232 1 (𝜑𝑅𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5107  cmpt 5188  wf 6507  (class class class)co 7387  cr 11067   + caddc 11071  *cxr 11207  cle 11209  cmin 11405  (,)cioo 13306  [,]cicc 13309  cnccncf 24769   D cdv 25764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768
This theorem is referenced by:  aks4d1p1p5  42063
  Copyright terms: Public domain W3C validator