Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvle2 Structured version   Visualization version   GIF version

Theorem dvle2 42054
Description: Collapsed dvle 26061. (Contributed by metakunt, 19-Aug-2024.)
Hypotheses
Ref Expression
dvle2.1 (𝜑𝐴 ∈ ℝ)
dvle2.2 (𝜑𝐵 ∈ ℝ)
dvle2.3 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸) ∈ ((𝐴[,]𝐵)–cn→ℝ))
dvle2.4 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺) ∈ ((𝐴[,]𝐵)–cn→ℝ))
dvle2.5 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐸)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐹))
dvle2.6 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐺)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐻))
dvle2.7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐹𝐻)
dvle2.8 (𝑥 = 𝐴𝐸 = 𝑃)
dvle2.9 (𝑥 = 𝐴𝐺 = 𝑄)
dvle2.10 (𝑥 = 𝐵𝐸 = 𝑅)
dvle2.11 (𝑥 = 𝐵𝐺 = 𝑆)
dvle2.12 (𝜑𝑃𝑄)
dvle2.13 (𝜑𝐴𝐵)
Assertion
Ref Expression
dvle2 (𝜑𝑅𝑆)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑃   𝑥,𝑄   𝑥,𝑅   𝑥,𝑆   𝜑,𝑥
Allowed substitution hints:   𝐸(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem dvle2
StepHypRef Expression
1 dvle2.10 . . . . . 6 (𝑥 = 𝐵𝐸 = 𝑅)
21eleq1d 2824 . . . . 5 (𝑥 = 𝐵 → (𝐸 ∈ ℝ ↔ 𝑅 ∈ ℝ))
3 dvle2.3 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸) ∈ ((𝐴[,]𝐵)–cn→ℝ))
4 cncff 24933 . . . . . . 7 ((𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸) ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸):(𝐴[,]𝐵)⟶ℝ)
53, 4syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸):(𝐴[,]𝐵)⟶ℝ)
6 eqid 2735 . . . . . . 7 (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸) = (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸)
76fmpt 7130 . . . . . 6 (∀𝑥 ∈ (𝐴[,]𝐵)𝐸 ∈ ℝ ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐸):(𝐴[,]𝐵)⟶ℝ)
85, 7sylibr 234 . . . . 5 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)𝐸 ∈ ℝ)
9 dvle2.2 . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
109rexrd 11309 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
11 dvle2.13 . . . . . . 7 (𝜑𝐴𝐵)
129leidd 11827 . . . . . . 7 (𝜑𝐵𝐵)
1310, 11, 123jca 1127 . . . . . 6 (𝜑 → (𝐵 ∈ ℝ*𝐴𝐵𝐵𝐵))
14 dvle2.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
1514rexrd 11309 . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
16 elicc1 13428 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ*𝐴𝐵𝐵𝐵)))
1715, 10, 16syl2anc 584 . . . . . 6 (𝜑 → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ*𝐴𝐵𝐵𝐵)))
1813, 17mpbird 257 . . . . 5 (𝜑𝐵 ∈ (𝐴[,]𝐵))
192, 8, 18rspcdva 3623 . . . 4 (𝜑𝑅 ∈ ℝ)
20 dvle2.8 . . . . . 6 (𝑥 = 𝐴𝐸 = 𝑃)
2120eleq1d 2824 . . . . 5 (𝑥 = 𝐴 → (𝐸 ∈ ℝ ↔ 𝑃 ∈ ℝ))
2214leidd 11827 . . . . . . 7 (𝜑𝐴𝐴)
2315, 22, 113jca 1127 . . . . . 6 (𝜑 → (𝐴 ∈ ℝ*𝐴𝐴𝐴𝐵))
24 elicc1 13428 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 ∈ (𝐴[,]𝐵) ↔ (𝐴 ∈ ℝ*𝐴𝐴𝐴𝐵)))
2515, 10, 24syl2anc 584 . . . . . 6 (𝜑 → (𝐴 ∈ (𝐴[,]𝐵) ↔ (𝐴 ∈ ℝ*𝐴𝐴𝐴𝐵)))
2623, 25mpbird 257 . . . . 5 (𝜑𝐴 ∈ (𝐴[,]𝐵))
2721, 8, 26rspcdva 3623 . . . 4 (𝜑𝑃 ∈ ℝ)
2819, 27resubcld 11689 . . 3 (𝜑 → (𝑅𝑃) ∈ ℝ)
29 dvle2.11 . . . . . 6 (𝑥 = 𝐵𝐺 = 𝑆)
3029eleq1d 2824 . . . . 5 (𝑥 = 𝐵 → (𝐺 ∈ ℝ ↔ 𝑆 ∈ ℝ))
31 dvle2.4 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺) ∈ ((𝐴[,]𝐵)–cn→ℝ))
32 cncff 24933 . . . . . . 7 ((𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺) ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺):(𝐴[,]𝐵)⟶ℝ)
3331, 32syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺):(𝐴[,]𝐵)⟶ℝ)
34 eqid 2735 . . . . . . 7 (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺) = (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺)
3534fmpt 7130 . . . . . 6 (∀𝑥 ∈ (𝐴[,]𝐵)𝐺 ∈ ℝ ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝐺):(𝐴[,]𝐵)⟶ℝ)
3633, 35sylibr 234 . . . . 5 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)𝐺 ∈ ℝ)
3730, 36, 18rspcdva 3623 . . . 4 (𝜑𝑆 ∈ ℝ)
38 dvle2.9 . . . . . 6 (𝑥 = 𝐴𝐺 = 𝑄)
3938eleq1d 2824 . . . . 5 (𝑥 = 𝐴 → (𝐺 ∈ ℝ ↔ 𝑄 ∈ ℝ))
4039, 36, 26rspcdva 3623 . . . 4 (𝜑𝑄 ∈ ℝ)
4137, 40resubcld 11689 . . 3 (𝜑 → (𝑆𝑄) ∈ ℝ)
42 dvle2.5 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐸)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐹))
43 dvle2.6 . . . 4 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐺)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐻))
44 dvle2.7 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐹𝐻)
4514, 9, 3, 42, 31, 43, 44, 26, 18, 11, 20, 38, 1, 29dvle 26061 . . 3 (𝜑 → (𝑅𝑃) ≤ (𝑆𝑄))
46 dvle2.12 . . 3 (𝜑𝑃𝑄)
4728, 27, 41, 40, 45, 46le2addd 11880 . 2 (𝜑 → ((𝑅𝑃) + 𝑃) ≤ ((𝑆𝑄) + 𝑄))
4819recnd 11287 . . . 4 (𝜑𝑅 ∈ ℂ)
4927recnd 11287 . . . 4 (𝜑𝑃 ∈ ℂ)
5048, 49npcand 11622 . . 3 (𝜑 → ((𝑅𝑃) + 𝑃) = 𝑅)
5137recnd 11287 . . . 4 (𝜑𝑆 ∈ ℂ)
5240recnd 11287 . . . 4 (𝜑𝑄 ∈ ℂ)
5351, 52npcand 11622 . . 3 (𝜑 → ((𝑆𝑄) + 𝑄) = 𝑆)
5450, 53breq12d 5161 . 2 (𝜑 → (((𝑅𝑃) + 𝑃) ≤ ((𝑆𝑄) + 𝑄) ↔ 𝑅𝑆))
5547, 54mpbid 232 1 (𝜑𝑅𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059   class class class wbr 5148  cmpt 5231  wf 6559  (class class class)co 7431  cr 11152   + caddc 11156  *cxr 11292  cle 11294  cmin 11490  (,)cioo 13384  [,]cicc 13387  cnccncf 24916   D cdv 25913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-cmp 23411  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917
This theorem is referenced by:  aks4d1p1p5  42057
  Copyright terms: Public domain W3C validator