| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > radcnvcl | Structured version Visualization version GIF version | ||
| Description: The radius of convergence 𝑅 of an infinite series is a nonnegative extended real number. (Contributed by Mario Carneiro, 26-Feb-2015.) |
| Ref | Expression |
|---|---|
| pser.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
| radcnv.a | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| radcnv.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
| Ref | Expression |
|---|---|
| radcnvcl | ⊢ (𝜑 → 𝑅 ∈ (0[,]+∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | radcnv.r | . . 3 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
| 2 | ssrab2 4031 | . . . . 5 ⊢ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ } ⊆ ℝ | |
| 3 | ressxr 11159 | . . . . 5 ⊢ ℝ ⊆ ℝ* | |
| 4 | 2, 3 | sstri 3945 | . . . 4 ⊢ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ } ⊆ ℝ* |
| 5 | supxrcl 13217 | . . . 4 ⊢ ({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ } ⊆ ℝ* → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*) | |
| 6 | 4, 5 | mp1i 13 | . . 3 ⊢ (𝜑 → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*) |
| 7 | 1, 6 | eqeltrid 2832 | . 2 ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
| 8 | pser.g | . . . . 5 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
| 9 | radcnv.a | . . . . 5 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
| 10 | 8, 9 | radcnv0 26323 | . . . 4 ⊢ (𝜑 → 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }) |
| 11 | supxrub 13226 | . . . 4 ⊢ (({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ } ⊆ ℝ* ∧ 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }) → 0 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) | |
| 12 | 4, 10, 11 | sylancr 587 | . . 3 ⊢ (𝜑 → 0 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) |
| 13 | 12, 1 | breqtrrdi 5134 | . 2 ⊢ (𝜑 → 0 ≤ 𝑅) |
| 14 | pnfge 13032 | . . 3 ⊢ (𝑅 ∈ ℝ* → 𝑅 ≤ +∞) | |
| 15 | 7, 14 | syl 17 | . 2 ⊢ (𝜑 → 𝑅 ≤ +∞) |
| 16 | 0xr 11162 | . . 3 ⊢ 0 ∈ ℝ* | |
| 17 | pnfxr 11169 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 18 | elicc1 13292 | . . 3 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅 ∧ 𝑅 ≤ +∞))) | |
| 19 | 16, 17, 18 | mp2an 692 | . 2 ⊢ (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅 ∧ 𝑅 ≤ +∞)) |
| 20 | 7, 13, 15, 19 | syl3anbrc 1344 | 1 ⊢ (𝜑 → 𝑅 ∈ (0[,]+∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3394 ⊆ wss 3903 class class class wbr 5092 ↦ cmpt 5173 dom cdm 5619 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 supcsup 9330 ℂcc 11007 ℝcr 11008 0cc0 11009 + caddc 11012 · cmul 11014 +∞cpnf 11146 ℝ*cxr 11148 < clt 11149 ≤ cle 11150 ℕ0cn0 12384 [,]cicc 13251 seqcseq 13908 ↑cexp 13968 ⇝ cli 15391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-icc 13255 df-fz 13411 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 |
| This theorem is referenced by: radcnvlt1 26325 radcnvle 26327 pserulm 26329 psercnlem2 26332 psercnlem1 26333 psercn 26334 pserdvlem1 26335 pserdvlem2 26336 abelthlem3 26341 abelth 26349 logtayl 26567 |
| Copyright terms: Public domain | W3C validator |