MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  radcnvcl Structured version   Visualization version   GIF version

Theorem radcnvcl 25920
Description: The radius of convergence 𝑅 of an infinite series is a nonnegative extended real number. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
pser.g 𝐺 = (π‘₯ ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (π‘₯↑𝑛))))
radcnv.a (πœ‘ β†’ 𝐴:β„•0βŸΆβ„‚)
radcnv.r 𝑅 = sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (πΊβ€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < )
Assertion
Ref Expression
radcnvcl (πœ‘ β†’ 𝑅 ∈ (0[,]+∞))
Distinct variable groups:   π‘₯,𝑛,𝐴   𝐺,π‘Ÿ
Allowed substitution hints:   πœ‘(π‘₯,𝑛,π‘Ÿ)   𝐴(π‘Ÿ)   𝑅(π‘₯,𝑛,π‘Ÿ)   𝐺(π‘₯,𝑛)

Proof of Theorem radcnvcl
StepHypRef Expression
1 radcnv.r . . 3 𝑅 = sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (πΊβ€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < )
2 ssrab2 4076 . . . . 5 {π‘Ÿ ∈ ℝ ∣ seq0( + , (πΊβ€˜π‘Ÿ)) ∈ dom ⇝ } βŠ† ℝ
3 ressxr 11254 . . . . 5 ℝ βŠ† ℝ*
42, 3sstri 3990 . . . 4 {π‘Ÿ ∈ ℝ ∣ seq0( + , (πΊβ€˜π‘Ÿ)) ∈ dom ⇝ } βŠ† ℝ*
5 supxrcl 13290 . . . 4 ({π‘Ÿ ∈ ℝ ∣ seq0( + , (πΊβ€˜π‘Ÿ)) ∈ dom ⇝ } βŠ† ℝ* β†’ sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (πΊβ€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*)
64, 5mp1i 13 . . 3 (πœ‘ β†’ sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (πΊβ€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*)
71, 6eqeltrid 2837 . 2 (πœ‘ β†’ 𝑅 ∈ ℝ*)
8 pser.g . . . . 5 𝐺 = (π‘₯ ∈ β„‚ ↦ (𝑛 ∈ β„•0 ↦ ((π΄β€˜π‘›) Β· (π‘₯↑𝑛))))
9 radcnv.a . . . . 5 (πœ‘ β†’ 𝐴:β„•0βŸΆβ„‚)
108, 9radcnv0 25919 . . . 4 (πœ‘ β†’ 0 ∈ {π‘Ÿ ∈ ℝ ∣ seq0( + , (πΊβ€˜π‘Ÿ)) ∈ dom ⇝ })
11 supxrub 13299 . . . 4 (({π‘Ÿ ∈ ℝ ∣ seq0( + , (πΊβ€˜π‘Ÿ)) ∈ dom ⇝ } βŠ† ℝ* ∧ 0 ∈ {π‘Ÿ ∈ ℝ ∣ seq0( + , (πΊβ€˜π‘Ÿ)) ∈ dom ⇝ }) β†’ 0 ≀ sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (πΊβ€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ))
124, 10, 11sylancr 587 . . 3 (πœ‘ β†’ 0 ≀ sup({π‘Ÿ ∈ ℝ ∣ seq0( + , (πΊβ€˜π‘Ÿ)) ∈ dom ⇝ }, ℝ*, < ))
1312, 1breqtrrdi 5189 . 2 (πœ‘ β†’ 0 ≀ 𝑅)
14 pnfge 13106 . . 3 (𝑅 ∈ ℝ* β†’ 𝑅 ≀ +∞)
157, 14syl 17 . 2 (πœ‘ β†’ 𝑅 ≀ +∞)
16 0xr 11257 . . 3 0 ∈ ℝ*
17 pnfxr 11264 . . 3 +∞ ∈ ℝ*
18 elicc1 13364 . . 3 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) β†’ (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≀ 𝑅 ∧ 𝑅 ≀ +∞)))
1916, 17, 18mp2an 690 . 2 (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≀ 𝑅 ∧ 𝑅 ≀ +∞))
207, 13, 15, 19syl3anbrc 1343 1 (πœ‘ β†’ 𝑅 ∈ (0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  {crab 3432   βŠ† wss 3947   class class class wbr 5147   ↦ cmpt 5230  dom cdm 5675  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  supcsup 9431  β„‚cc 11104  β„cr 11105  0cc0 11106   + caddc 11109   Β· cmul 11111  +∞cpnf 11241  β„*cxr 11243   < clt 11244   ≀ cle 11245  β„•0cn0 12468  [,]cicc 13323  seqcseq 13962  β†‘cexp 14023   ⇝ cli 15424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-icc 13327  df-fz 13481  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428
This theorem is referenced by:  radcnvlt1  25921  radcnvle  25923  pserulm  25925  psercnlem2  25927  psercnlem1  25928  psercn  25929  pserdvlem1  25930  pserdvlem2  25931  abelthlem3  25936  abelth  25944  logtayl  26159
  Copyright terms: Public domain W3C validator