![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > radcnvcl | Structured version Visualization version GIF version |
Description: The radius of convergence 𝑅 of an infinite series is a nonnegative extended real number. (Contributed by Mario Carneiro, 26-Feb-2015.) |
Ref | Expression |
---|---|
pser.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
radcnv.a | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
radcnv.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
Ref | Expression |
---|---|
radcnvcl | ⊢ (𝜑 → 𝑅 ∈ (0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | radcnv.r | . . 3 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
2 | ssrab2 4073 | . . . . 5 ⊢ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ } ⊆ ℝ | |
3 | ressxr 11299 | . . . . 5 ⊢ ℝ ⊆ ℝ* | |
4 | 2, 3 | sstri 3988 | . . . 4 ⊢ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ } ⊆ ℝ* |
5 | supxrcl 13342 | . . . 4 ⊢ ({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ } ⊆ ℝ* → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*) | |
6 | 4, 5 | mp1i 13 | . . 3 ⊢ (𝜑 → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*) |
7 | 1, 6 | eqeltrid 2830 | . 2 ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
8 | pser.g | . . . . 5 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
9 | radcnv.a | . . . . 5 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
10 | 8, 9 | radcnv0 26442 | . . . 4 ⊢ (𝜑 → 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }) |
11 | supxrub 13351 | . . . 4 ⊢ (({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ } ⊆ ℝ* ∧ 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }) → 0 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) | |
12 | 4, 10, 11 | sylancr 585 | . . 3 ⊢ (𝜑 → 0 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) |
13 | 12, 1 | breqtrrdi 5187 | . 2 ⊢ (𝜑 → 0 ≤ 𝑅) |
14 | pnfge 13158 | . . 3 ⊢ (𝑅 ∈ ℝ* → 𝑅 ≤ +∞) | |
15 | 7, 14 | syl 17 | . 2 ⊢ (𝜑 → 𝑅 ≤ +∞) |
16 | 0xr 11302 | . . 3 ⊢ 0 ∈ ℝ* | |
17 | pnfxr 11309 | . . 3 ⊢ +∞ ∈ ℝ* | |
18 | elicc1 13416 | . . 3 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅 ∧ 𝑅 ≤ +∞))) | |
19 | 16, 17, 18 | mp2an 690 | . 2 ⊢ (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅 ∧ 𝑅 ≤ +∞)) |
20 | 7, 13, 15, 19 | syl3anbrc 1340 | 1 ⊢ (𝜑 → 𝑅 ∈ (0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 {crab 3419 ⊆ wss 3946 class class class wbr 5145 ↦ cmpt 5228 dom cdm 5674 ⟶wf 6542 ‘cfv 6546 (class class class)co 7416 supcsup 9476 ℂcc 11147 ℝcr 11148 0cc0 11149 + caddc 11152 · cmul 11154 +∞cpnf 11286 ℝ*cxr 11288 < clt 11289 ≤ cle 11290 ℕ0cn0 12518 [,]cicc 13375 seqcseq 14015 ↑cexp 14075 ⇝ cli 15481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-inf2 9677 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 ax-pre-sup 11227 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-sup 9478 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-div 11913 df-nn 12259 df-2 12321 df-n0 12519 df-z 12605 df-uz 12869 df-rp 13023 df-icc 13379 df-fz 13533 df-seq 14016 df-exp 14076 df-cj 15099 df-re 15100 df-im 15101 df-sqrt 15235 df-abs 15236 df-clim 15485 |
This theorem is referenced by: radcnvlt1 26444 radcnvle 26446 pserulm 26448 psercnlem2 26451 psercnlem1 26452 psercn 26453 pserdvlem1 26454 pserdvlem2 26455 abelthlem3 26460 abelth 26468 logtayl 26684 |
Copyright terms: Public domain | W3C validator |