MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  radcnvcl Structured version   Visualization version   GIF version

Theorem radcnvcl 26443
Description: The radius of convergence 𝑅 of an infinite series is a nonnegative extended real number. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
pser.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
radcnv.a (𝜑𝐴:ℕ0⟶ℂ)
radcnv.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
Assertion
Ref Expression
radcnvcl (𝜑𝑅 ∈ (0[,]+∞))
Distinct variable groups:   𝑥,𝑛,𝐴   𝐺,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐴(𝑟)   𝑅(𝑥,𝑛,𝑟)   𝐺(𝑥,𝑛)

Proof of Theorem radcnvcl
StepHypRef Expression
1 radcnv.r . . 3 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
2 ssrab2 4073 . . . . 5 {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ⊆ ℝ
3 ressxr 11299 . . . . 5 ℝ ⊆ ℝ*
42, 3sstri 3988 . . . 4 {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ⊆ ℝ*
5 supxrcl 13342 . . . 4 ({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ⊆ ℝ* → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*)
64, 5mp1i 13 . . 3 (𝜑 → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*)
71, 6eqeltrid 2830 . 2 (𝜑𝑅 ∈ ℝ*)
8 pser.g . . . . 5 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
9 radcnv.a . . . . 5 (𝜑𝐴:ℕ0⟶ℂ)
108, 9radcnv0 26442 . . . 4 (𝜑 → 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
11 supxrub 13351 . . . 4 (({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ⊆ ℝ* ∧ 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }) → 0 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < ))
124, 10, 11sylancr 585 . . 3 (𝜑 → 0 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < ))
1312, 1breqtrrdi 5187 . 2 (𝜑 → 0 ≤ 𝑅)
14 pnfge 13158 . . 3 (𝑅 ∈ ℝ*𝑅 ≤ +∞)
157, 14syl 17 . 2 (𝜑𝑅 ≤ +∞)
16 0xr 11302 . . 3 0 ∈ ℝ*
17 pnfxr 11309 . . 3 +∞ ∈ ℝ*
18 elicc1 13416 . . 3 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞)))
1916, 17, 18mp2an 690 . 2 (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞))
207, 13, 15, 19syl3anbrc 1340 1 (𝜑𝑅 ∈ (0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1084   = wceq 1534  wcel 2099  {crab 3419  wss 3946   class class class wbr 5145  cmpt 5228  dom cdm 5674  wf 6542  cfv 6546  (class class class)co 7416  supcsup 9476  cc 11147  cr 11148  0cc0 11149   + caddc 11152   · cmul 11154  +∞cpnf 11286  *cxr 11288   < clt 11289  cle 11290  0cn0 12518  [,]cicc 13375  seqcseq 14015  cexp 14075  cli 15481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-inf2 9677  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226  ax-pre-sup 11227
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-sup 9478  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-div 11913  df-nn 12259  df-2 12321  df-n0 12519  df-z 12605  df-uz 12869  df-rp 13023  df-icc 13379  df-fz 13533  df-seq 14016  df-exp 14076  df-cj 15099  df-re 15100  df-im 15101  df-sqrt 15235  df-abs 15236  df-clim 15485
This theorem is referenced by:  radcnvlt1  26444  radcnvle  26446  pserulm  26448  psercnlem2  26451  psercnlem1  26452  psercn  26453  pserdvlem1  26454  pserdvlem2  26455  abelthlem3  26460  abelth  26468  logtayl  26684
  Copyright terms: Public domain W3C validator