![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > radcnvcl | Structured version Visualization version GIF version |
Description: The radius of convergence 𝑅 of an infinite series is a nonnegative extended real number. (Contributed by Mario Carneiro, 26-Feb-2015.) |
Ref | Expression |
---|---|
pser.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
radcnv.a | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
radcnv.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
Ref | Expression |
---|---|
radcnvcl | ⊢ (𝜑 → 𝑅 ∈ (0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | radcnv.r | . . 3 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
2 | ssrab2 4025 | . . . . 5 ⊢ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ } ⊆ ℝ | |
3 | ressxr 11120 | . . . . 5 ⊢ ℝ ⊆ ℝ* | |
4 | 2, 3 | sstri 3941 | . . . 4 ⊢ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ } ⊆ ℝ* |
5 | supxrcl 13150 | . . . 4 ⊢ ({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ } ⊆ ℝ* → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*) | |
6 | 4, 5 | mp1i 13 | . . 3 ⊢ (𝜑 → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ∈ ℝ*) |
7 | 1, 6 | eqeltrid 2841 | . 2 ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
8 | pser.g | . . . . 5 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
9 | radcnv.a | . . . . 5 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
10 | 8, 9 | radcnv0 25681 | . . . 4 ⊢ (𝜑 → 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }) |
11 | supxrub 13159 | . . . 4 ⊢ (({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ } ⊆ ℝ* ∧ 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }) → 0 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) | |
12 | 4, 10, 11 | sylancr 587 | . . 3 ⊢ (𝜑 → 0 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) |
13 | 12, 1 | breqtrrdi 5134 | . 2 ⊢ (𝜑 → 0 ≤ 𝑅) |
14 | pnfge 12967 | . . 3 ⊢ (𝑅 ∈ ℝ* → 𝑅 ≤ +∞) | |
15 | 7, 14 | syl 17 | . 2 ⊢ (𝜑 → 𝑅 ≤ +∞) |
16 | 0xr 11123 | . . 3 ⊢ 0 ∈ ℝ* | |
17 | pnfxr 11130 | . . 3 ⊢ +∞ ∈ ℝ* | |
18 | elicc1 13224 | . . 3 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅 ∧ 𝑅 ≤ +∞))) | |
19 | 16, 17, 18 | mp2an 689 | . 2 ⊢ (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅 ∧ 𝑅 ≤ +∞)) |
20 | 7, 13, 15, 19 | syl3anbrc 1342 | 1 ⊢ (𝜑 → 𝑅 ∈ (0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 {crab 3403 ⊆ wss 3898 class class class wbr 5092 ↦ cmpt 5175 dom cdm 5620 ⟶wf 6475 ‘cfv 6479 (class class class)co 7337 supcsup 9297 ℂcc 10970 ℝcr 10971 0cc0 10972 + caddc 10975 · cmul 10977 +∞cpnf 11107 ℝ*cxr 11109 < clt 11110 ≤ cle 11111 ℕ0cn0 12334 [,]cicc 13183 seqcseq 13822 ↑cexp 13883 ⇝ cli 15292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-inf2 9498 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-pre-sup 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-sup 9299 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-nn 12075 df-2 12137 df-n0 12335 df-z 12421 df-uz 12684 df-rp 12832 df-icc 13187 df-fz 13341 df-seq 13823 df-exp 13884 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-clim 15296 |
This theorem is referenced by: radcnvlt1 25683 radcnvle 25685 pserulm 25687 psercnlem2 25689 psercnlem1 25690 psercn 25691 pserdvlem1 25692 pserdvlem2 25693 abelthlem3 25698 abelth 25706 logtayl 25921 |
Copyright terms: Public domain | W3C validator |