Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccsuble Structured version   Visualization version   GIF version

Theorem iccsuble 40654
Description: An upper bound to the distance of two elements in a closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
iccsuble.1 (𝜑𝐴 ∈ ℝ)
iccsuble.2 (𝜑𝐵 ∈ ℝ)
iccsuble.3 (𝜑𝐶 ∈ (𝐴[,]𝐵))
iccsuble.4 (𝜑𝐷 ∈ (𝐴[,]𝐵))
Assertion
Ref Expression
iccsuble (𝜑 → (𝐶𝐷) ≤ (𝐵𝐴))

Proof of Theorem iccsuble
StepHypRef Expression
1 iccsuble.1 . . 3 (𝜑𝐴 ∈ ℝ)
2 iccsuble.2 . . 3 (𝜑𝐵 ∈ ℝ)
3 iccsuble.3 . . 3 (𝜑𝐶 ∈ (𝐴[,]𝐵))
4 eliccre 40640 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℝ)
51, 2, 3, 4syl3anc 1439 . 2 (𝜑𝐶 ∈ ℝ)
6 iccsuble.4 . . 3 (𝜑𝐷 ∈ (𝐴[,]𝐵))
7 eliccre 40640 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐷 ∈ (𝐴[,]𝐵)) → 𝐷 ∈ ℝ)
81, 2, 6, 7syl3anc 1439 . 2 (𝜑𝐷 ∈ ℝ)
9 elicc2 12550 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
101, 2, 9syl2anc 579 . . . 4 (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
113, 10mpbid 224 . . 3 (𝜑 → (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵))
1211simp3d 1135 . 2 (𝜑𝐶𝐵)
13 elicc2 12550 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐷 ∈ (𝐴[,]𝐵) ↔ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷𝐵)))
141, 2, 13syl2anc 579 . . . 4 (𝜑 → (𝐷 ∈ (𝐴[,]𝐵) ↔ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷𝐵)))
156, 14mpbid 224 . . 3 (𝜑 → (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷𝐵))
1615simp2d 1134 . 2 (𝜑𝐴𝐷)
175, 1, 2, 8, 12, 16le2subd 10995 1 (𝜑 → (𝐶𝐷) ≤ (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  w3a 1071  wcel 2107   class class class wbr 4886  (class class class)co 6922  cr 10271  cle 10412  cmin 10606  [,]cicc 12490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-po 5274  df-so 5275  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-icc 12494
This theorem is referenced by:  fourierdlem6  41257  fourierdlem42  41293  hoidmvlelem1  41736
  Copyright terms: Public domain W3C validator