Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccsuble Structured version   Visualization version   GIF version

Theorem iccsuble 45489
Description: An upper bound to the distance of two elements in a closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
iccsuble.1 (𝜑𝐴 ∈ ℝ)
iccsuble.2 (𝜑𝐵 ∈ ℝ)
iccsuble.3 (𝜑𝐶 ∈ (𝐴[,]𝐵))
iccsuble.4 (𝜑𝐷 ∈ (𝐴[,]𝐵))
Assertion
Ref Expression
iccsuble (𝜑 → (𝐶𝐷) ≤ (𝐵𝐴))

Proof of Theorem iccsuble
StepHypRef Expression
1 iccsuble.1 . . 3 (𝜑𝐴 ∈ ℝ)
2 iccsuble.2 . . 3 (𝜑𝐵 ∈ ℝ)
3 iccsuble.3 . . 3 (𝜑𝐶 ∈ (𝐴[,]𝐵))
4 eliccre 45475 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℝ)
51, 2, 3, 4syl3anc 1372 . 2 (𝜑𝐶 ∈ ℝ)
6 iccsuble.4 . . 3 (𝜑𝐷 ∈ (𝐴[,]𝐵))
7 eliccre 45475 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐷 ∈ (𝐴[,]𝐵)) → 𝐷 ∈ ℝ)
81, 2, 6, 7syl3anc 1372 . 2 (𝜑𝐷 ∈ ℝ)
9 elicc2 13434 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
101, 2, 9syl2anc 584 . . . 4 (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
113, 10mpbid 232 . . 3 (𝜑 → (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵))
1211simp3d 1144 . 2 (𝜑𝐶𝐵)
13 elicc2 13434 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐷 ∈ (𝐴[,]𝐵) ↔ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷𝐵)))
141, 2, 13syl2anc 584 . . . 4 (𝜑 → (𝐷 ∈ (𝐴[,]𝐵) ↔ (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷𝐵)))
156, 14mpbid 232 . . 3 (𝜑 → (𝐷 ∈ ℝ ∧ 𝐴𝐷𝐷𝐵))
1615simp2d 1143 . 2 (𝜑𝐴𝐷)
175, 1, 2, 8, 12, 16le2subd 11865 1 (𝜑 → (𝐶𝐷) ≤ (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086  wcel 2107   class class class wbr 5123  (class class class)co 7413  cr 11136  cle 11278  cmin 11474  [,]cicc 13372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-po 5572  df-so 5573  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-icc 13376
This theorem is referenced by:  fourierdlem6  46085  fourierdlem42  46121  hoidmvlelem1  46567
  Copyright terms: Public domain W3C validator