![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccsuble | Structured version Visualization version GIF version |
Description: An upper bound to the distance of two elements in a closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
iccsuble.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
iccsuble.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
iccsuble.3 | ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) |
iccsuble.4 | ⊢ (𝜑 → 𝐷 ∈ (𝐴[,]𝐵)) |
Ref | Expression |
---|---|
iccsuble | ⊢ (𝜑 → (𝐶 − 𝐷) ≤ (𝐵 − 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccsuble.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | iccsuble.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | iccsuble.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) | |
4 | eliccre 44516 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℝ) | |
5 | 1, 2, 3, 4 | syl3anc 1369 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
6 | iccsuble.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ (𝐴[,]𝐵)) | |
7 | eliccre 44516 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐷 ∈ (𝐴[,]𝐵)) → 𝐷 ∈ ℝ) | |
8 | 1, 2, 6, 7 | syl3anc 1369 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℝ) |
9 | elicc2 13393 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
10 | 1, 2, 9 | syl2anc 582 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
11 | 3, 10 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
12 | 11 | simp3d 1142 | . 2 ⊢ (𝜑 → 𝐶 ≤ 𝐵) |
13 | elicc2 13393 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐷 ∈ (𝐴[,]𝐵) ↔ (𝐷 ∈ ℝ ∧ 𝐴 ≤ 𝐷 ∧ 𝐷 ≤ 𝐵))) | |
14 | 1, 2, 13 | syl2anc 582 | . . . 4 ⊢ (𝜑 → (𝐷 ∈ (𝐴[,]𝐵) ↔ (𝐷 ∈ ℝ ∧ 𝐴 ≤ 𝐷 ∧ 𝐷 ≤ 𝐵))) |
15 | 6, 14 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝐷 ∈ ℝ ∧ 𝐴 ≤ 𝐷 ∧ 𝐷 ≤ 𝐵)) |
16 | 15 | simp2d 1141 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐷) |
17 | 5, 1, 2, 8, 12, 16 | le2subd 11838 | 1 ⊢ (𝜑 → (𝐶 − 𝐷) ≤ (𝐵 − 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 ∈ wcel 2104 class class class wbr 5147 (class class class)co 7411 ℝcr 11111 ≤ cle 11253 − cmin 11448 [,]cicc 13331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-icc 13335 |
This theorem is referenced by: fourierdlem6 45127 fourierdlem42 45163 hoidmvlelem1 45609 |
Copyright terms: Public domain | W3C validator |