Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccsuble | Structured version Visualization version GIF version |
Description: An upper bound to the distance of two elements in a closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
iccsuble.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
iccsuble.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
iccsuble.3 | ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) |
iccsuble.4 | ⊢ (𝜑 → 𝐷 ∈ (𝐴[,]𝐵)) |
Ref | Expression |
---|---|
iccsuble | ⊢ (𝜑 → (𝐶 − 𝐷) ≤ (𝐵 − 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccsuble.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | iccsuble.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | iccsuble.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) | |
4 | eliccre 43431 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℝ) | |
5 | 1, 2, 3, 4 | syl3anc 1371 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
6 | iccsuble.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ (𝐴[,]𝐵)) | |
7 | eliccre 43431 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐷 ∈ (𝐴[,]𝐵)) → 𝐷 ∈ ℝ) | |
8 | 1, 2, 6, 7 | syl3anc 1371 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℝ) |
9 | elicc2 13254 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
10 | 1, 2, 9 | syl2anc 585 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
11 | 3, 10 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
12 | 11 | simp3d 1144 | . 2 ⊢ (𝜑 → 𝐶 ≤ 𝐵) |
13 | elicc2 13254 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐷 ∈ (𝐴[,]𝐵) ↔ (𝐷 ∈ ℝ ∧ 𝐴 ≤ 𝐷 ∧ 𝐷 ≤ 𝐵))) | |
14 | 1, 2, 13 | syl2anc 585 | . . . 4 ⊢ (𝜑 → (𝐷 ∈ (𝐴[,]𝐵) ↔ (𝐷 ∈ ℝ ∧ 𝐴 ≤ 𝐷 ∧ 𝐷 ≤ 𝐵))) |
15 | 6, 14 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝐷 ∈ ℝ ∧ 𝐴 ≤ 𝐷 ∧ 𝐷 ≤ 𝐵)) |
16 | 15 | simp2d 1143 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐷) |
17 | 5, 1, 2, 8, 12, 16 | le2subd 11705 | 1 ⊢ (𝜑 → (𝐶 − 𝐷) ≤ (𝐵 − 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1087 ∈ wcel 2106 class class class wbr 5100 (class class class)co 7346 ℝcr 10980 ≤ cle 11120 − cmin 11315 [,]cicc 13192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 ax-cnex 11037 ax-resscn 11038 ax-1cn 11039 ax-icn 11040 ax-addcl 11041 ax-addrcl 11042 ax-mulcl 11043 ax-mulrcl 11044 ax-mulcom 11045 ax-addass 11046 ax-mulass 11047 ax-distr 11048 ax-i2m1 11049 ax-1ne0 11050 ax-1rid 11051 ax-rnegex 11052 ax-rrecex 11053 ax-cnre 11054 ax-pre-lttri 11055 ax-pre-lttrn 11056 ax-pre-ltadd 11057 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-br 5101 df-opab 5163 df-mpt 5184 df-id 5525 df-po 5539 df-so 5540 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7302 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8578 df-en 8814 df-dom 8815 df-sdom 8816 df-pnf 11121 df-mnf 11122 df-xr 11123 df-ltxr 11124 df-le 11125 df-sub 11317 df-neg 11318 df-icc 13196 |
This theorem is referenced by: fourierdlem6 44042 fourierdlem42 44078 hoidmvlelem1 44522 |
Copyright terms: Public domain | W3C validator |