| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iccsuble | Structured version Visualization version GIF version | ||
| Description: An upper bound to the distance of two elements in a closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| iccsuble.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| iccsuble.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| iccsuble.3 | ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) |
| iccsuble.4 | ⊢ (𝜑 → 𝐷 ∈ (𝐴[,]𝐵)) |
| Ref | Expression |
|---|---|
| iccsuble | ⊢ (𝜑 → (𝐶 − 𝐷) ≤ (𝐵 − 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccsuble.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | iccsuble.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | iccsuble.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) | |
| 4 | eliccre 45496 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℝ) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 6 | iccsuble.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ (𝐴[,]𝐵)) | |
| 7 | eliccre 45496 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐷 ∈ (𝐴[,]𝐵)) → 𝐷 ∈ ℝ) | |
| 8 | 1, 2, 6, 7 | syl3anc 1373 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℝ) |
| 9 | elicc2 13378 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
| 10 | 1, 2, 9 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
| 11 | 3, 10 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
| 12 | 11 | simp3d 1144 | . 2 ⊢ (𝜑 → 𝐶 ≤ 𝐵) |
| 13 | elicc2 13378 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐷 ∈ (𝐴[,]𝐵) ↔ (𝐷 ∈ ℝ ∧ 𝐴 ≤ 𝐷 ∧ 𝐷 ≤ 𝐵))) | |
| 14 | 1, 2, 13 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐷 ∈ (𝐴[,]𝐵) ↔ (𝐷 ∈ ℝ ∧ 𝐴 ≤ 𝐷 ∧ 𝐷 ≤ 𝐵))) |
| 15 | 6, 14 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐷 ∈ ℝ ∧ 𝐴 ≤ 𝐷 ∧ 𝐷 ≤ 𝐵)) |
| 16 | 15 | simp2d 1143 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐷) |
| 17 | 5, 1, 2, 8, 12, 16 | le2subd 11804 | 1 ⊢ (𝜑 → (𝐶 − 𝐷) ≤ (𝐵 − 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5109 (class class class)co 7389 ℝcr 11073 ≤ cle 11215 − cmin 11411 [,]cicc 13315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-po 5548 df-so 5549 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-icc 13319 |
| This theorem is referenced by: fourierdlem6 46104 fourierdlem42 46140 hoidmvlelem1 46586 |
| Copyright terms: Public domain | W3C validator |