Step | Hyp | Ref
| Expression |
1 | | eqeq1 2742 |
. . . . . . 7
⊢ (𝑤 = 𝑥 → (𝑤 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑧 + 𝑇))) |
2 | 1 | rexbidv 3226 |
. . . . . 6
⊢ (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))) |
3 | 2 | elrab 3624 |
. . . . 5
⊢ (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} ↔ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))) |
4 | | simprr 770 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))) → ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇)) |
5 | | nfv 1917 |
. . . . . . . 8
⊢
Ⅎ𝑧𝜑 |
6 | | nfv 1917 |
. . . . . . . . 9
⊢
Ⅎ𝑧 𝑥 ∈ ℂ |
7 | | nfre1 3239 |
. . . . . . . . 9
⊢
Ⅎ𝑧∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇) |
8 | 6, 7 | nfan 1902 |
. . . . . . . 8
⊢
Ⅎ𝑧(𝑥 ∈ ℂ ∧
∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇)) |
9 | 5, 8 | nfan 1902 |
. . . . . . 7
⊢
Ⅎ𝑧(𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))) |
10 | | nfv 1917 |
. . . . . . 7
⊢
Ⅎ𝑧 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) |
11 | | simp3 1137 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → 𝑥 = (𝑧 + 𝑇)) |
12 | | iccshift.1 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐴 ∈ ℝ) |
13 | | iccshift.2 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐵 ∈ ℝ) |
14 | 12, 13 | iccssred 13166 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
15 | 14 | sselda 3921 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) → 𝑧 ∈ ℝ) |
16 | | iccshift.3 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑇 ∈ ℝ) |
17 | 16 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) → 𝑇 ∈ ℝ) |
18 | 15, 17 | readdcld 11004 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝑧 + 𝑇) ∈ ℝ) |
19 | 12 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ) |
20 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) → 𝑧 ∈ (𝐴[,]𝐵)) |
21 | 13 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ) |
22 | | elicc2 13144 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑧 ∈ (𝐴[,]𝐵) ↔ (𝑧 ∈ ℝ ∧ 𝐴 ≤ 𝑧 ∧ 𝑧 ≤ 𝐵))) |
23 | 19, 21, 22 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝑧 ∈ (𝐴[,]𝐵) ↔ (𝑧 ∈ ℝ ∧ 𝐴 ≤ 𝑧 ∧ 𝑧 ≤ 𝐵))) |
24 | 20, 23 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝑧 ∈ ℝ ∧ 𝐴 ≤ 𝑧 ∧ 𝑧 ≤ 𝐵)) |
25 | 24 | simp2d 1142 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝑧) |
26 | 19, 15, 17, 25 | leadd1dd 11589 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐴 + 𝑇) ≤ (𝑧 + 𝑇)) |
27 | 24 | simp3d 1143 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) → 𝑧 ≤ 𝐵) |
28 | 15, 21, 17, 27 | leadd1dd 11589 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝑧 + 𝑇) ≤ (𝐵 + 𝑇)) |
29 | 18, 26, 28 | 3jca 1127 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵)) → ((𝑧 + 𝑇) ∈ ℝ ∧ (𝐴 + 𝑇) ≤ (𝑧 + 𝑇) ∧ (𝑧 + 𝑇) ≤ (𝐵 + 𝑇))) |
30 | 29 | 3adant3 1131 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → ((𝑧 + 𝑇) ∈ ℝ ∧ (𝐴 + 𝑇) ≤ (𝑧 + 𝑇) ∧ (𝑧 + 𝑇) ≤ (𝐵 + 𝑇))) |
31 | 12, 16 | readdcld 11004 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴 + 𝑇) ∈ ℝ) |
32 | 31 | 3ad2ant1 1132 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝐴 + 𝑇) ∈ ℝ) |
33 | 13, 16 | readdcld 11004 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐵 + 𝑇) ∈ ℝ) |
34 | 33 | 3ad2ant1 1132 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝐵 + 𝑇) ∈ ℝ) |
35 | | elicc2 13144 |
. . . . . . . . . . . 12
⊢ (((𝐴 + 𝑇) ∈ ℝ ∧ (𝐵 + 𝑇) ∈ ℝ) → ((𝑧 + 𝑇) ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↔ ((𝑧 + 𝑇) ∈ ℝ ∧ (𝐴 + 𝑇) ≤ (𝑧 + 𝑇) ∧ (𝑧 + 𝑇) ≤ (𝐵 + 𝑇)))) |
36 | 32, 34, 35 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → ((𝑧 + 𝑇) ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↔ ((𝑧 + 𝑇) ∈ ℝ ∧ (𝐴 + 𝑇) ≤ (𝑧 + 𝑇) ∧ (𝑧 + 𝑇) ≤ (𝐵 + 𝑇)))) |
37 | 30, 36 | mpbird 256 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝑧 + 𝑇) ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) |
38 | 11, 37 | eqeltrd 2839 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) |
39 | 38 | 3exp 1118 |
. . . . . . . 8
⊢ (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) → (𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))))) |
40 | 39 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))) → (𝑧 ∈ (𝐴[,]𝐵) → (𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))))) |
41 | 9, 10, 40 | rexlimd 3250 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))) → (∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))) |
42 | 4, 41 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) |
43 | 3, 42 | sylan2b 594 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) |
44 | 31 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐴 + 𝑇) ∈ ℝ) |
45 | 33 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐵 + 𝑇) ∈ ℝ) |
46 | | simpr 485 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) |
47 | | eliccre 43043 |
. . . . . . 7
⊢ (((𝐴 + 𝑇) ∈ ℝ ∧ (𝐵 + 𝑇) ∈ ℝ ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ℝ) |
48 | 44, 45, 46, 47 | syl3anc 1370 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ℝ) |
49 | 48 | recnd 11003 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ℂ) |
50 | 12 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 ∈ ℝ) |
51 | 13 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐵 ∈ ℝ) |
52 | 16 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑇 ∈ ℝ) |
53 | 48, 52 | resubcld 11403 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 − 𝑇) ∈ ℝ) |
54 | 12 | recnd 11003 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ ℂ) |
55 | 16 | recnd 11003 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑇 ∈ ℂ) |
56 | 54, 55 | pncand 11333 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 + 𝑇) − 𝑇) = 𝐴) |
57 | 56 | eqcomd 2744 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 = ((𝐴 + 𝑇) − 𝑇)) |
58 | 57 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 = ((𝐴 + 𝑇) − 𝑇)) |
59 | | elicc2 13144 |
. . . . . . . . . . . 12
⊢ (((𝐴 + 𝑇) ∈ ℝ ∧ (𝐵 + 𝑇) ∈ ℝ) → (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↔ (𝑥 ∈ ℝ ∧ (𝐴 + 𝑇) ≤ 𝑥 ∧ 𝑥 ≤ (𝐵 + 𝑇)))) |
60 | 44, 45, 59 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↔ (𝑥 ∈ ℝ ∧ (𝐴 + 𝑇) ≤ 𝑥 ∧ 𝑥 ≤ (𝐵 + 𝑇)))) |
61 | 46, 60 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 ∈ ℝ ∧ (𝐴 + 𝑇) ≤ 𝑥 ∧ 𝑥 ≤ (𝐵 + 𝑇))) |
62 | 61 | simp2d 1142 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐴 + 𝑇) ≤ 𝑥) |
63 | 44, 48, 52, 62 | lesub1dd 11591 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝐴 + 𝑇) − 𝑇) ≤ (𝑥 − 𝑇)) |
64 | 58, 63 | eqbrtrd 5096 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 ≤ (𝑥 − 𝑇)) |
65 | 61 | simp3d 1143 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ≤ (𝐵 + 𝑇)) |
66 | 48, 45, 52, 65 | lesub1dd 11591 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 − 𝑇) ≤ ((𝐵 + 𝑇) − 𝑇)) |
67 | 13 | recnd 11003 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ ℂ) |
68 | 67, 55 | pncand 11333 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐵 + 𝑇) − 𝑇) = 𝐵) |
69 | 68 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝐵 + 𝑇) − 𝑇) = 𝐵) |
70 | 66, 69 | breqtrd 5100 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 − 𝑇) ≤ 𝐵) |
71 | 50, 51, 53, 64, 70 | eliccd 43042 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 − 𝑇) ∈ (𝐴[,]𝐵)) |
72 | 55 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑇 ∈ ℂ) |
73 | 49, 72 | npcand 11336 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝑥 − 𝑇) + 𝑇) = 𝑥) |
74 | 73 | eqcomd 2744 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 = ((𝑥 − 𝑇) + 𝑇)) |
75 | | oveq1 7282 |
. . . . . . 7
⊢ (𝑧 = (𝑥 − 𝑇) → (𝑧 + 𝑇) = ((𝑥 − 𝑇) + 𝑇)) |
76 | 75 | rspceeqv 3575 |
. . . . . 6
⊢ (((𝑥 − 𝑇) ∈ (𝐴[,]𝐵) ∧ 𝑥 = ((𝑥 − 𝑇) + 𝑇)) → ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇)) |
77 | 71, 74, 76 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇)) |
78 | 49, 77, 3 | sylanbrc 583 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}) |
79 | 43, 78 | impbida 798 |
. . 3
⊢ (𝜑 → (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} ↔ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))) |
80 | 79 | eqrdv 2736 |
. 2
⊢ (𝜑 → {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} = ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) |
81 | 80 | eqcomd 2744 |
1
⊢ (𝜑 → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}) |