Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccshift Structured version   Visualization version   GIF version

Theorem iccshift 44950
Description: A closed interval shifted by a real number. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
iccshift.1 (𝜑𝐴 ∈ ℝ)
iccshift.2 (𝜑𝐵 ∈ ℝ)
iccshift.3 (𝜑𝑇 ∈ ℝ)
Assertion
Ref Expression
iccshift (𝜑 → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)})
Distinct variable groups:   𝑤,𝐴,𝑧   𝑤,𝐵,𝑧   𝑤,𝑇,𝑧   𝜑,𝑧
Allowed substitution hint:   𝜑(𝑤)

Proof of Theorem iccshift
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2732 . . . . . . 7 (𝑤 = 𝑥 → (𝑤 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑧 + 𝑇)))
21rexbidv 3176 . . . . . 6 (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇)))
32elrab 3684 . . . . 5 (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} ↔ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇)))
4 simprr 771 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))) → ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))
5 nfv 1909 . . . . . . . 8 𝑧𝜑
6 nfv 1909 . . . . . . . . 9 𝑧 𝑥 ∈ ℂ
7 nfre1 3280 . . . . . . . . 9 𝑧𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇)
86, 7nfan 1894 . . . . . . . 8 𝑧(𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))
95, 8nfan 1894 . . . . . . 7 𝑧(𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇)))
10 nfv 1909 . . . . . . 7 𝑧 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))
11 simp3 1135 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → 𝑥 = (𝑧 + 𝑇))
12 iccshift.1 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ)
13 iccshift.2 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℝ)
1412, 13iccssred 13453 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
1514sselda 3982 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝑧 ∈ ℝ)
16 iccshift.3 . . . . . . . . . . . . . . 15 (𝜑𝑇 ∈ ℝ)
1716adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝑇 ∈ ℝ)
1815, 17readdcld 11283 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝑧 + 𝑇) ∈ ℝ)
1912adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
20 simpr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝑧 ∈ (𝐴[,]𝐵))
2113adantr 479 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
22 elicc2 13431 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑧 ∈ (𝐴[,]𝐵) ↔ (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵)))
2319, 21, 22syl2anc 582 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝑧 ∈ (𝐴[,]𝐵) ↔ (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵)))
2420, 23mpbid 231 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵))
2524simp2d 1140 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝐴𝑧)
2619, 15, 17, 25leadd1dd 11868 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝐴 + 𝑇) ≤ (𝑧 + 𝑇))
2724simp3d 1141 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝑧𝐵)
2815, 21, 17, 27leadd1dd 11868 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝑧 + 𝑇) ≤ (𝐵 + 𝑇))
2918, 26, 283jca 1125 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → ((𝑧 + 𝑇) ∈ ℝ ∧ (𝐴 + 𝑇) ≤ (𝑧 + 𝑇) ∧ (𝑧 + 𝑇) ≤ (𝐵 + 𝑇)))
30293adant3 1129 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → ((𝑧 + 𝑇) ∈ ℝ ∧ (𝐴 + 𝑇) ≤ (𝑧 + 𝑇) ∧ (𝑧 + 𝑇) ≤ (𝐵 + 𝑇)))
3112, 16readdcld 11283 . . . . . . . . . . . . 13 (𝜑 → (𝐴 + 𝑇) ∈ ℝ)
32313ad2ant1 1130 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝐴 + 𝑇) ∈ ℝ)
3313, 16readdcld 11283 . . . . . . . . . . . . 13 (𝜑 → (𝐵 + 𝑇) ∈ ℝ)
34333ad2ant1 1130 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝐵 + 𝑇) ∈ ℝ)
35 elicc2 13431 . . . . . . . . . . . 12 (((𝐴 + 𝑇) ∈ ℝ ∧ (𝐵 + 𝑇) ∈ ℝ) → ((𝑧 + 𝑇) ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↔ ((𝑧 + 𝑇) ∈ ℝ ∧ (𝐴 + 𝑇) ≤ (𝑧 + 𝑇) ∧ (𝑧 + 𝑇) ≤ (𝐵 + 𝑇))))
3632, 34, 35syl2anc 582 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → ((𝑧 + 𝑇) ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↔ ((𝑧 + 𝑇) ∈ ℝ ∧ (𝐴 + 𝑇) ≤ (𝑧 + 𝑇) ∧ (𝑧 + 𝑇) ≤ (𝐵 + 𝑇))))
3730, 36mpbird 256 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝑧 + 𝑇) ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
3811, 37eqeltrd 2829 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
39383exp 1116 . . . . . . . 8 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) → (𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))))
4039adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))) → (𝑧 ∈ (𝐴[,]𝐵) → (𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))))
419, 10, 40rexlimd 3261 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))) → (∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))))
424, 41mpd 15 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
433, 42sylan2b 592 . . . 4 ((𝜑𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
4431adantr 479 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐴 + 𝑇) ∈ ℝ)
4533adantr 479 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐵 + 𝑇) ∈ ℝ)
46 simpr 483 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
47 eliccre 44937 . . . . . . 7 (((𝐴 + 𝑇) ∈ ℝ ∧ (𝐵 + 𝑇) ∈ ℝ ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ℝ)
4844, 45, 46, 47syl3anc 1368 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ℝ)
4948recnd 11282 . . . . 5 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ℂ)
5012adantr 479 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 ∈ ℝ)
5113adantr 479 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐵 ∈ ℝ)
5216adantr 479 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑇 ∈ ℝ)
5348, 52resubcld 11682 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥𝑇) ∈ ℝ)
5412recnd 11282 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
5516recnd 11282 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℂ)
5654, 55pncand 11612 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝑇) − 𝑇) = 𝐴)
5756eqcomd 2734 . . . . . . . . 9 (𝜑𝐴 = ((𝐴 + 𝑇) − 𝑇))
5857adantr 479 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 = ((𝐴 + 𝑇) − 𝑇))
59 elicc2 13431 . . . . . . . . . . . 12 (((𝐴 + 𝑇) ∈ ℝ ∧ (𝐵 + 𝑇) ∈ ℝ) → (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↔ (𝑥 ∈ ℝ ∧ (𝐴 + 𝑇) ≤ 𝑥𝑥 ≤ (𝐵 + 𝑇))))
6044, 45, 59syl2anc 582 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↔ (𝑥 ∈ ℝ ∧ (𝐴 + 𝑇) ≤ 𝑥𝑥 ≤ (𝐵 + 𝑇))))
6146, 60mpbid 231 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 ∈ ℝ ∧ (𝐴 + 𝑇) ≤ 𝑥𝑥 ≤ (𝐵 + 𝑇)))
6261simp2d 1140 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐴 + 𝑇) ≤ 𝑥)
6344, 48, 52, 62lesub1dd 11870 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝐴 + 𝑇) − 𝑇) ≤ (𝑥𝑇))
6458, 63eqbrtrd 5174 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 ≤ (𝑥𝑇))
6561simp3d 1141 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ≤ (𝐵 + 𝑇))
6648, 45, 52, 65lesub1dd 11870 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥𝑇) ≤ ((𝐵 + 𝑇) − 𝑇))
6713recnd 11282 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
6867, 55pncand 11612 . . . . . . . . 9 (𝜑 → ((𝐵 + 𝑇) − 𝑇) = 𝐵)
6968adantr 479 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝐵 + 𝑇) − 𝑇) = 𝐵)
7066, 69breqtrd 5178 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥𝑇) ≤ 𝐵)
7150, 51, 53, 64, 70eliccd 44936 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥𝑇) ∈ (𝐴[,]𝐵))
7255adantr 479 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑇 ∈ ℂ)
7349, 72npcand 11615 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝑥𝑇) + 𝑇) = 𝑥)
7473eqcomd 2734 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 = ((𝑥𝑇) + 𝑇))
75 oveq1 7433 . . . . . . 7 (𝑧 = (𝑥𝑇) → (𝑧 + 𝑇) = ((𝑥𝑇) + 𝑇))
7675rspceeqv 3633 . . . . . 6 (((𝑥𝑇) ∈ (𝐴[,]𝐵) ∧ 𝑥 = ((𝑥𝑇) + 𝑇)) → ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))
7771, 74, 76syl2anc 582 . . . . 5 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))
7849, 77, 3sylanbrc 581 . . . 4 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)})
7943, 78impbida 799 . . 3 (𝜑 → (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} ↔ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))))
8079eqrdv 2726 . 2 (𝜑 → {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} = ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
8180eqcomd 2734 1 (𝜑 → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wrex 3067  {crab 3430   class class class wbr 5152  (class class class)co 7426  cc 11146  cr 11147   + caddc 11151  cle 11289  cmin 11484  [,]cicc 13369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-cnex 11204  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-po 5594  df-so 5595  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-er 8733  df-en 8973  df-dom 8974  df-sdom 8975  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-sub 11486  df-neg 11487  df-icc 13373
This theorem is referenced by:  itgiccshift  45415  itgperiod  45416
  Copyright terms: Public domain W3C validator