Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem84 Structured version   Visualization version   GIF version

Theorem fourierdlem84 44421
Description: If 𝐹 is piecewise coninuous and 𝐷 is continuous, then 𝐺 is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem84.1 (𝜑𝐴 ∈ ℝ)
fourierdlem84.2 (𝜑𝐵 ∈ ℝ)
fourierdlem84.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem84.xre (𝜑𝑋 ∈ ℝ)
fourierdlem84.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem84.m (𝜑𝑀 ∈ ℕ)
fourierdlem84.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem84.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
fourierdlem84.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
fourierdlem84.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
fourierdlem84.q 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
fourierdlem84.o 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem84.d (𝜑𝐷 ∈ (ℝ–cn→ℝ))
fourierdlem84.g 𝐺 = (𝑠 ∈ (𝐴[,]𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠)))
Assertion
Ref Expression
fourierdlem84 (𝜑𝐺 ∈ 𝐿1)
Distinct variable groups:   𝐴,𝑖,𝑚,𝑝   𝐴,𝑠,𝑖   𝐵,𝑖,𝑚,𝑝   𝐵,𝑠   𝐷,𝑠   𝐹,𝑠   𝑖,𝐺   𝐿,𝑠   𝑖,𝑀,𝑠   𝑚,𝑀,𝑝   𝑄,𝑖,𝑠   𝑄,𝑝   𝑅,𝑠   𝑖,𝑉,𝑠   𝑉,𝑝   𝑖,𝑋,𝑠   𝑚,𝑋,𝑝   𝜑,𝑖,𝑠
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐷(𝑖,𝑚,𝑝)   𝑃(𝑖,𝑚,𝑠,𝑝)   𝑄(𝑚)   𝑅(𝑖,𝑚,𝑝)   𝐹(𝑖,𝑚,𝑝)   𝐺(𝑚,𝑠,𝑝)   𝐿(𝑖,𝑚,𝑝)   𝑂(𝑖,𝑚,𝑠,𝑝)   𝑉(𝑚)

Proof of Theorem fourierdlem84
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem84.o . 2 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
2 fourierdlem84.m . 2 (𝜑𝑀 ∈ ℕ)
3 fourierdlem84.1 . . 3 (𝜑𝐴 ∈ ℝ)
4 fourierdlem84.2 . . 3 (𝜑𝐵 ∈ ℝ)
5 fourierdlem84.xre . . 3 (𝜑𝑋 ∈ ℝ)
6 fourierdlem84.p . . 3 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
7 fourierdlem84.v . . 3 (𝜑𝑉 ∈ (𝑃𝑀))
8 fourierdlem84.q . . 3 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
93, 4, 5, 6, 1, 2, 7, 8fourierdlem14 44352 . 2 (𝜑𝑄 ∈ (𝑂𝑀))
10 fourierdlem84.f . . . . . . 7 (𝜑𝐹:ℝ⟶ℝ)
1110adantr 481 . . . . . 6 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝐹:ℝ⟶ℝ)
125adantr 481 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑋 ∈ ℝ)
133adantr 481 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
144adantr 481 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
15 simpr 485 . . . . . . . 8 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ (𝐴[,]𝐵))
16 eliccre 43733 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℝ)
1713, 14, 15, 16syl3anc 1371 . . . . . . 7 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℝ)
1812, 17readdcld 11184 . . . . . 6 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (𝑋 + 𝑠) ∈ ℝ)
1911, 18ffvelcdmd 7036 . . . . 5 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
20 fourierdlem84.d . . . . . . . 8 (𝜑𝐷 ∈ (ℝ–cn→ℝ))
21 cncff 24256 . . . . . . . 8 (𝐷 ∈ (ℝ–cn→ℝ) → 𝐷:ℝ⟶ℝ)
2220, 21syl 17 . . . . . . 7 (𝜑𝐷:ℝ⟶ℝ)
2322adantr 481 . . . . . 6 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝐷:ℝ⟶ℝ)
2423, 17ffvelcdmd 7036 . . . . 5 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (𝐷𝑠) ∈ ℝ)
2519, 24remulcld 11185 . . . 4 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠)) ∈ ℝ)
2625recnd 11183 . . 3 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠)) ∈ ℂ)
27 fourierdlem84.g . . 3 𝐺 = (𝑠 ∈ (𝐴[,]𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠)))
2826, 27fmptd 7062 . 2 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
2927a1i 11 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐺 = (𝑠 ∈ (𝐴[,]𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))))
3029reseq1d 5936 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑠 ∈ (𝐴[,]𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
31 ioossicc 13350 . . . . . 6 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))
323rexrd 11205 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
3332adantr 481 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐴 ∈ ℝ*)
344rexrd 11205 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
3534adantr 481 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐵 ∈ ℝ*)
361, 2, 9fourierdlem15 44353 . . . . . . . 8 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
3736adantr 481 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
38 simpr 485 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
3933, 35, 37, 38fourierdlem8 44346 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵))
4031, 39sstrid 3955 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵))
4140resmptd 5994 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ (𝐴[,]𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))))
4230, 41eqtrd 2776 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))))
433, 5readdcld 11184 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 + 𝑋) ∈ ℝ)
444, 5readdcld 11184 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 + 𝑋) ∈ ℝ)
4543, 44iccssred 13351 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ⊆ ℝ)
4645adantr 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐴 + 𝑋)[,](𝐵 + 𝑋)) ⊆ ℝ)
476, 2, 7fourierdlem15 44353 . . . . . . . . . . . . . 14 (𝜑𝑉:(0...𝑀)⟶((𝐴 + 𝑋)[,](𝐵 + 𝑋)))
4847adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑉:(0...𝑀)⟶((𝐴 + 𝑋)[,](𝐵 + 𝑋)))
49 elfzofz 13588 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
5049adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
5148, 50ffvelcdmd 7036 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)))
5246, 51sseldd 3945 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℝ)
5352rexrd 11205 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℝ*)
5453adantr 481 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑉𝑖) ∈ ℝ*)
55 fzofzp1 13669 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
5655adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
5748, 56ffvelcdmd 7036 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ((𝐴 + 𝑋)[,](𝐵 + 𝑋)))
5846, 57sseldd 3945 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℝ)
5958rexrd 11205 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℝ*)
6059adantr 481 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑉‘(𝑖 + 1)) ∈ ℝ*)
615ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ℝ)
62 elioore 13294 . . . . . . . . . . 11 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑠 ∈ ℝ)
6362adantl 482 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ℝ)
6461, 63readdcld 11184 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ℝ)
655recnd 11183 . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ ℂ)
6665adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℂ)
673, 4iccssred 13351 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
6867adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐴[,]𝐵) ⊆ ℝ)
6937, 50ffvelcdmd 7036 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ (𝐴[,]𝐵))
7068, 69sseldd 3945 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
7170recnd 11183 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℂ)
7266, 71addcomd 11357 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝑄𝑖)) = ((𝑄𝑖) + 𝑋))
735adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ)
7452, 73resubcld 11583 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉𝑖) − 𝑋) ∈ ℝ)
758fvmpt2 6959 . . . . . . . . . . . . . 14 ((𝑖 ∈ (0...𝑀) ∧ ((𝑉𝑖) − 𝑋) ∈ ℝ) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
7650, 74, 75syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
7776oveq1d 7372 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + 𝑋) = (((𝑉𝑖) − 𝑋) + 𝑋))
7852recnd 11183 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℂ)
7978, 66npcand 11516 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑉𝑖) − 𝑋) + 𝑋) = (𝑉𝑖))
8072, 77, 793eqtrrd 2781 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) = (𝑋 + (𝑄𝑖)))
8180adantr 481 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑉𝑖) = (𝑋 + (𝑄𝑖)))
8270adantr 481 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ∈ ℝ)
8370rexrd 11205 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ*)
8483adantr 481 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ∈ ℝ*)
8537, 68fssd 6686 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
8685, 56ffvelcdmd 7036 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
8786rexrd 11205 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
8887adantr 481 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
89 simpr 485 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
90 ioogtlb 43723 . . . . . . . . . . . 12 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) < 𝑠)
9184, 88, 89, 90syl3anc 1371 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) < 𝑠)
9282, 63, 61, 91ltadd2dd 11314 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + (𝑄𝑖)) < (𝑋 + 𝑠))
9381, 92eqbrtrd 5127 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑉𝑖) < (𝑋 + 𝑠))
9486adantr 481 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
95 iooltub 43738 . . . . . . . . . . . 12 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 < (𝑄‘(𝑖 + 1)))
9684, 88, 89, 95syl3anc 1371 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 < (𝑄‘(𝑖 + 1)))
9763, 94, 61, 96ltadd2dd 11314 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) < (𝑋 + (𝑄‘(𝑖 + 1))))
98 fveq2 6842 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑗 → (𝑉𝑖) = (𝑉𝑗))
9998oveq1d 7372 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑗 → ((𝑉𝑖) − 𝑋) = ((𝑉𝑗) − 𝑋))
10099cbvmptv 5218 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋)) = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋))
1018, 100eqtri 2764 . . . . . . . . . . . . . . 15 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋))
102101a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋)))
103 fveq2 6842 . . . . . . . . . . . . . . . 16 (𝑗 = (𝑖 + 1) → (𝑉𝑗) = (𝑉‘(𝑖 + 1)))
104103oveq1d 7372 . . . . . . . . . . . . . . 15 (𝑗 = (𝑖 + 1) → ((𝑉𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋))
105104adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑉𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋))
10658, 73resubcld 11583 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ)
107102, 105, 56, 106fvmptd 6955 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋))
108107oveq2d 7373 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝑄‘(𝑖 + 1))) = (𝑋 + ((𝑉‘(𝑖 + 1)) − 𝑋)))
10958recnd 11183 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℂ)
11066, 109pncan3d 11515 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑋 + ((𝑉‘(𝑖 + 1)) − 𝑋)) = (𝑉‘(𝑖 + 1)))
111108, 110eqtrd 2776 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝑄‘(𝑖 + 1))) = (𝑉‘(𝑖 + 1)))
112111adantr 481 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + (𝑄‘(𝑖 + 1))) = (𝑉‘(𝑖 + 1)))
11397, 112breqtrd 5131 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) < (𝑉‘(𝑖 + 1)))
11454, 60, 64, 93, 113eliood 43726 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))
115 fvres 6861 . . . . . . . 8 ((𝑋 + 𝑠) ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑠)))
116114, 115syl 17 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑠)))
117116eqcomd 2742 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑠)) = ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘(𝑋 + 𝑠)))
118117mpteq2dva 5205 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘(𝑋 + 𝑠))))
119 ioosscn 13326 . . . . . . 7 ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) ⊆ ℂ
120119a1i 11 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) ⊆ ℂ)
121 fourierdlem84.fcn . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))
122 ioosscn 13326 . . . . . . 7 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ
123122a1i 11 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ)
124120, 121, 123, 66, 114fourierdlem23 44361 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))))‘(𝑋 + 𝑠))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
125118, 124eqeltrd 2838 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
126 eqid 2736 . . . . 5 (𝑠 ∈ ℝ ↦ (𝐷𝑠)) = (𝑠 ∈ ℝ ↦ (𝐷𝑠))
127 ax-resscn 11108 . . . . . . . 8 ℝ ⊆ ℂ
128 ssid 3966 . . . . . . . 8 ℂ ⊆ ℂ
129 cncfss 24262 . . . . . . . 8 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ))
130127, 128, 129mp2an 690 . . . . . . 7 (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ)
13122feqmptd 6910 . . . . . . . . 9 (𝜑𝐷 = (𝑠 ∈ ℝ ↦ (𝐷𝑠)))
132131eqcomd 2742 . . . . . . . 8 (𝜑 → (𝑠 ∈ ℝ ↦ (𝐷𝑠)) = 𝐷)
133132, 20eqeltrd 2838 . . . . . . 7 (𝜑 → (𝑠 ∈ ℝ ↦ (𝐷𝑠)) ∈ (ℝ–cn→ℝ))
134130, 133sselid 3942 . . . . . 6 (𝜑 → (𝑠 ∈ ℝ ↦ (𝐷𝑠)) ∈ (ℝ–cn→ℂ))
135134adantr 481 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ℝ ↦ (𝐷𝑠)) ∈ (ℝ–cn→ℂ))
13640, 68sstrd 3954 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)
137128a1i 11 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ℂ ⊆ ℂ)
13822adantr 481 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐷:ℝ⟶ℝ)
13962adantl 482 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ℝ)
140138, 139ffvelcdmd 7036 . . . . . . 7 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐷𝑠) ∈ ℝ)
141140recnd 11183 . . . . . 6 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐷𝑠) ∈ ℂ)
142141adantlr 713 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐷𝑠) ∈ ℂ)
143126, 135, 136, 137, 142cncfmptssg 44102 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐷𝑠)) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
144125, 143mulcncf 24810 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
14542, 144eqeltrd 2838 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
146 eqid 2736 . . . 4 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠)))
147 eqid 2736 . . . 4 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐷𝑠)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐷𝑠))
148 eqid 2736 . . . 4 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠)))
14910adantr 481 . . . . . . 7 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐹:ℝ⟶ℝ)
1505adantr 481 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ℝ)
151150, 139readdcld 11184 . . . . . . 7 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ℝ)
152149, 151ffvelcdmd 7036 . . . . . 6 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
153152recnd 11183 . . . . 5 ((𝜑𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
154153adantlr 713 . . . 4 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
15510adantr 481 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹:ℝ⟶ℝ)
156 ioossre 13325 . . . . . 6 ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) ⊆ ℝ
157156a1i 11 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1))) ⊆ ℝ)
15882, 91gtned 11290 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ≠ (𝑄𝑖))
159 fourierdlem84.r . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
16080oveq2d 7373 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)) = ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑋 + (𝑄𝑖))))
161159, 160eleqtrd 2840 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑋 + (𝑄𝑖))))
162155, 73, 136, 146, 114, 157, 158, 161, 71fourierdlem53 44390 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) lim (𝑄𝑖)))
163 limcresi 25249 . . . . . 6 ((𝑠 ∈ ℝ ↦ (𝐷𝑠)) lim (𝑄𝑖)) ⊆ (((𝑠 ∈ ℝ ↦ (𝐷𝑠)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))
164130, 20sselid 3942 . . . . . . . . 9 (𝜑𝐷 ∈ (ℝ–cn→ℂ))
165164adantr 481 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐷 ∈ (ℝ–cn→ℂ))
166165, 70cnlimci 25253 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷‘(𝑄𝑖)) ∈ (𝐷 lim (𝑄𝑖)))
167131oveq1d 7372 . . . . . . . 8 (𝜑 → (𝐷 lim (𝑄𝑖)) = ((𝑠 ∈ ℝ ↦ (𝐷𝑠)) lim (𝑄𝑖)))
168167adantr 481 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷 lim (𝑄𝑖)) = ((𝑠 ∈ ℝ ↦ (𝐷𝑠)) lim (𝑄𝑖)))
169166, 168eleqtrd 2840 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷‘(𝑄𝑖)) ∈ ((𝑠 ∈ ℝ ↦ (𝐷𝑠)) lim (𝑄𝑖)))
170163, 169sselid 3942 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷‘(𝑄𝑖)) ∈ (((𝑠 ∈ ℝ ↦ (𝐷𝑠)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
171136resmptd 5994 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ℝ ↦ (𝐷𝑠)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐷𝑠)))
172171oveq1d 7372 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑠 ∈ ℝ ↦ (𝐷𝑠)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐷𝑠)) lim (𝑄𝑖)))
173170, 172eleqtrd 2840 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷‘(𝑄𝑖)) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐷𝑠)) lim (𝑄𝑖)))
174146, 147, 148, 154, 142, 162, 173mullimc 43847 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑅 · (𝐷‘(𝑄𝑖))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))) lim (𝑄𝑖)))
17527reseq1i 5933 . . . . 5 (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑠 ∈ (𝐴[,]𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
176175, 41eqtr2id 2789 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))) = (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
177176oveq1d 7372 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))) lim (𝑄𝑖)) = ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
178174, 177eleqtrd 2840 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑅 · (𝐷‘(𝑄𝑖))) ∈ ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
17963, 96ltned 11291 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ≠ (𝑄‘(𝑖 + 1)))
180 fourierdlem84.l . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))
181111eqcomd 2742 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) = (𝑋 + (𝑄‘(𝑖 + 1))))
182181oveq2d 7373 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))) = ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑋 + (𝑄‘(𝑖 + 1)))))
183180, 182eleqtrd 2840 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑋 + (𝑄‘(𝑖 + 1)))))
18486recnd 11183 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℂ)
185155, 73, 136, 146, 114, 157, 179, 183, 184fourierdlem53 44390 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑠))) lim (𝑄‘(𝑖 + 1))))
186 limcresi 25249 . . . . . 6 ((𝑠 ∈ ℝ ↦ (𝐷𝑠)) lim (𝑄‘(𝑖 + 1))) ⊆ (((𝑠 ∈ ℝ ↦ (𝐷𝑠)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1)))
187165, 86cnlimci 25253 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷‘(𝑄‘(𝑖 + 1))) ∈ (𝐷 lim (𝑄‘(𝑖 + 1))))
188131oveq1d 7372 . . . . . . . 8 (𝜑 → (𝐷 lim (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ ℝ ↦ (𝐷𝑠)) lim (𝑄‘(𝑖 + 1))))
189188adantr 481 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷 lim (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ ℝ ↦ (𝐷𝑠)) lim (𝑄‘(𝑖 + 1))))
190187, 189eleqtrd 2840 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷‘(𝑄‘(𝑖 + 1))) ∈ ((𝑠 ∈ ℝ ↦ (𝐷𝑠)) lim (𝑄‘(𝑖 + 1))))
191186, 190sselid 3942 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷‘(𝑄‘(𝑖 + 1))) ∈ (((𝑠 ∈ ℝ ↦ (𝐷𝑠)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
192171oveq1d 7372 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑠 ∈ ℝ ↦ (𝐷𝑠)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐷𝑠)) lim (𝑄‘(𝑖 + 1))))
193191, 192eleqtrd 2840 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐷‘(𝑄‘(𝑖 + 1))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐷𝑠)) lim (𝑄‘(𝑖 + 1))))
194146, 147, 148, 154, 142, 185, 193mullimc 43847 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐿 · (𝐷‘(𝑄‘(𝑖 + 1)))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))) lim (𝑄‘(𝑖 + 1))))
195176oveq1d 7372 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷𝑠))) lim (𝑄‘(𝑖 + 1))) = ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
196194, 195eleqtrd 2840 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐿 · (𝐷‘(𝑄‘(𝑖 + 1)))) ∈ ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
1971, 2, 9, 28, 145, 178, 196fourierdlem69 44406 1 (𝜑𝐺 ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3064  {crab 3407  wss 3910   class class class wbr 5105  cmpt 5188  cres 5635  wf 6492  cfv 6496  (class class class)co 7357  m cmap 8765  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  *cxr 11188   < clt 11189  cmin 11385  cn 12153  (,)cioo 13264  [,]cicc 13267  ...cfz 13424  ..^cfzo 13567  cnccncf 24239  𝐿1cibl 24981   lim climc 25226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cc 10371  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-symdif 4202  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-cn 22578  df-cnp 22579  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-ovol 24828  df-vol 24829  df-mbf 24983  df-itg1 24984  df-itg2 24985  df-ibl 24986  df-itg 24987  df-0p 25034  df-limc 25230
This theorem is referenced by:  fourierdlem103  44440  fourierdlem104  44441  fourierdlem112  44449
  Copyright terms: Public domain W3C validator