![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ge0p1rp | Structured version Visualization version GIF version |
Description: A nonnegative number plus one is a positive number. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
ge0p1rp | ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 + 1) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2re 10612 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) | |
2 | 1 | adantr 473 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 + 1) ∈ ℝ) |
3 | 0red 10442 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ∈ ℝ) | |
4 | simpl 475 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ) | |
5 | simpr 477 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ 𝐴) | |
6 | ltp1 11280 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1)) | |
7 | 6 | adantr 473 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 < (𝐴 + 1)) |
8 | 3, 4, 2, 5, 7 | lelttrd 10597 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 < (𝐴 + 1)) |
9 | elrp 12205 | . 2 ⊢ ((𝐴 + 1) ∈ ℝ+ ↔ ((𝐴 + 1) ∈ ℝ ∧ 0 < (𝐴 + 1))) | |
10 | 2, 8, 9 | sylanbrc 575 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 + 1) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∈ wcel 2051 class class class wbr 4926 (class class class)co 6975 ℝcr 10333 0cc0 10334 1c1 10335 + caddc 10337 < clt 10473 ≤ cle 10474 ℝ+crp 12203 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 ax-resscn 10391 ax-1cn 10392 ax-icn 10393 ax-addcl 10394 ax-addrcl 10395 ax-mulcl 10396 ax-mulrcl 10397 ax-mulcom 10398 ax-addass 10399 ax-mulass 10400 ax-distr 10401 ax-i2m1 10402 ax-1ne0 10403 ax-1rid 10404 ax-rnegex 10405 ax-rrecex 10406 ax-cnre 10407 ax-pre-lttri 10408 ax-pre-lttrn 10409 ax-pre-ltadd 10410 ax-pre-mulgt0 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-nel 3069 df-ral 3088 df-rex 3089 df-reu 3090 df-rab 3092 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-op 4443 df-uni 4710 df-br 4927 df-opab 4989 df-mpt 5006 df-id 5309 df-po 5323 df-so 5324 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-riota 6936 df-ov 6978 df-oprab 6979 df-mpo 6980 df-er 8088 df-en 8306 df-dom 8307 df-sdom 8308 df-pnf 10475 df-mnf 10476 df-xr 10477 df-ltxr 10478 df-le 10479 df-sub 10671 df-neg 10672 df-rp 12204 |
This theorem is referenced by: ge0p1rpd 12277 loglesqrt 25056 |
Copyright terms: Public domain | W3C validator |