MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrtdiv Structured version   Visualization version   GIF version

Theorem sqrtdiv 15284
Description: Square root distributes over division. (Contributed by Mario Carneiro, 5-May-2016.)
Assertion
Ref Expression
sqrtdiv (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘(𝐴 / 𝐵)) = ((√‘𝐴) / (√‘𝐵)))

Proof of Theorem sqrtdiv
StepHypRef Expression
1 rerpdivcl 13039 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
21adantlr 715 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
3 elrp 13010 . . . . . 6 (𝐵 ∈ ℝ+ ↔ (𝐵 ∈ ℝ ∧ 0 < 𝐵))
4 divge0 12111 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵))
53, 4sylan2b 594 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → 0 ≤ (𝐴 / 𝐵))
6 resqrtcl 15272 . . . . 5 (((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵)) → (√‘(𝐴 / 𝐵)) ∈ ℝ)
72, 5, 6syl2anc 584 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘(𝐴 / 𝐵)) ∈ ℝ)
87recnd 11263 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘(𝐴 / 𝐵)) ∈ ℂ)
9 rpsqrtcl 15283 . . . . 5 (𝐵 ∈ ℝ+ → (√‘𝐵) ∈ ℝ+)
109adantl 481 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘𝐵) ∈ ℝ+)
1110rpcnd 13053 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘𝐵) ∈ ℂ)
1210rpne0d 13056 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘𝐵) ≠ 0)
138, 11, 12divcan4d 12023 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (((√‘(𝐴 / 𝐵)) · (√‘𝐵)) / (√‘𝐵)) = (√‘(𝐴 / 𝐵)))
14 rprege0 13024 . . . . . 6 (𝐵 ∈ ℝ+ → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
1514adantl 481 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
16 sqrtmul 15278 . . . . 5 ((((𝐴 / 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 / 𝐵)) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (√‘((𝐴 / 𝐵) · 𝐵)) = ((√‘(𝐴 / 𝐵)) · (√‘𝐵)))
172, 5, 15, 16syl21anc 837 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘((𝐴 / 𝐵) · 𝐵)) = ((√‘(𝐴 / 𝐵)) · (√‘𝐵)))
18 simpll 766 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℝ)
1918recnd 11263 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℂ)
20 rpcn 13019 . . . . . . 7 (𝐵 ∈ ℝ+𝐵 ∈ ℂ)
2120adantl 481 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℂ)
22 rpne0 13025 . . . . . . 7 (𝐵 ∈ ℝ+𝐵 ≠ 0)
2322adantl 481 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → 𝐵 ≠ 0)
2419, 21, 23divcan1d 12018 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) · 𝐵) = 𝐴)
2524fveq2d 6880 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘((𝐴 / 𝐵) · 𝐵)) = (√‘𝐴))
2617, 25eqtr3d 2772 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → ((√‘(𝐴 / 𝐵)) · (√‘𝐵)) = (√‘𝐴))
2726oveq1d 7420 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (((√‘(𝐴 / 𝐵)) · (√‘𝐵)) / (√‘𝐵)) = ((√‘𝐴) / (√‘𝐵)))
2813, 27eqtr3d 2772 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘(𝐴 / 𝐵)) = ((√‘𝐴) / (√‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129   · cmul 11134   < clt 11269  cle 11270   / cdiv 11894  +crp 13008  csqrt 15252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254
This theorem is referenced by:  sqrtdivd  15442  dchrisum0flblem2  27472  dchrisum0lem2a  27480  dchrisum0lem2  27481
  Copyright terms: Public domain W3C validator