Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rpdp2cl Structured version   Visualization version   GIF version

Theorem rpdp2cl 30731
Description: Closure for a decimal fraction in the positive real numbers. (Contributed by Thierry Arnoux, 16-Dec-2021.)
Hypotheses
Ref Expression
rpdp2cl.a 𝐴 ∈ ℕ0
rpdp2cl.b 𝐵 ∈ ℝ+
Assertion
Ref Expression
rpdp2cl 𝐴𝐵 ∈ ℝ+

Proof of Theorem rpdp2cl
StepHypRef Expression
1 df-dp2 30721 . 2 𝐴𝐵 = (𝐴 + (𝐵 / 10))
2 rpdp2cl.a . . . . 5 𝐴 ∈ ℕ0
32nn0rei 11987 . . . 4 𝐴 ∈ ℝ
4 rpssre 12479 . . . . 5 + ⊆ ℝ
5 rpdp2cl.b . . . . . 6 𝐵 ∈ ℝ+
6 10nn 12195 . . . . . . 7 10 ∈ ℕ
7 nnrp 12483 . . . . . . 7 (10 ∈ ℕ → 10 ∈ ℝ+)
86, 7ax-mp 5 . . . . . 6 10 ∈ ℝ+
9 rpdivcl 12497 . . . . . 6 ((𝐵 ∈ ℝ+10 ∈ ℝ+) → (𝐵 / 10) ∈ ℝ+)
105, 8, 9mp2an 692 . . . . 5 (𝐵 / 10) ∈ ℝ+
114, 10sselii 3874 . . . 4 (𝐵 / 10) ∈ ℝ
12 readdcl 10698 . . . 4 ((𝐴 ∈ ℝ ∧ (𝐵 / 10) ∈ ℝ) → (𝐴 + (𝐵 / 10)) ∈ ℝ)
133, 11, 12mp2an 692 . . 3 (𝐴 + (𝐵 / 10)) ∈ ℝ
143, 11pm3.2i 474 . . . 4 (𝐴 ∈ ℝ ∧ (𝐵 / 10) ∈ ℝ)
152nn0ge0i 12003 . . . . 5 0 ≤ 𝐴
16 rpgt0 12484 . . . . . 6 ((𝐵 / 10) ∈ ℝ+ → 0 < (𝐵 / 10))
1710, 16ax-mp 5 . . . . 5 0 < (𝐵 / 10)
1815, 17pm3.2i 474 . . . 4 (0 ≤ 𝐴 ∧ 0 < (𝐵 / 10))
19 addgegt0 11205 . . . 4 (((𝐴 ∈ ℝ ∧ (𝐵 / 10) ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐵 / 10))) → 0 < (𝐴 + (𝐵 / 10)))
2014, 18, 19mp2an 692 . . 3 0 < (𝐴 + (𝐵 / 10))
21 elrp 12474 . . 3 ((𝐴 + (𝐵 / 10)) ∈ ℝ+ ↔ ((𝐴 + (𝐵 / 10)) ∈ ℝ ∧ 0 < (𝐴 + (𝐵 / 10))))
2213, 20, 21mpbir2an 711 . 2 (𝐴 + (𝐵 / 10)) ∈ ℝ+
231, 22eqeltri 2829 1 𝐴𝐵 ∈ ℝ+
Colors of variables: wff setvar class
Syntax hints:  wa 399  wcel 2114   class class class wbr 5030  (class class class)co 7170  cr 10614  0cc0 10615  1c1 10616   + caddc 10618   < clt 10753  cle 10754   / cdiv 11375  cn 11716  0cn0 11976  cdc 12179  +crp 12472  cdp2 30720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-7 11784  df-8 11785  df-9 11786  df-n0 11977  df-dec 12180  df-rp 12473  df-dp2 30721
This theorem is referenced by:  rpdpcl  30752  dpexpp1  30757  hgt750lemd  32198  hgt750lem  32201  hgt750lem2  32202  hgt750leme  32208
  Copyright terms: Public domain W3C validator