| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rpdp2cl | Structured version Visualization version GIF version | ||
| Description: Closure for a decimal fraction in the positive real numbers. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
| Ref | Expression |
|---|---|
| rpdp2cl.a | ⊢ 𝐴 ∈ ℕ0 |
| rpdp2cl.b | ⊢ 𝐵 ∈ ℝ+ |
| Ref | Expression |
|---|---|
| rpdp2cl | ⊢ _𝐴𝐵 ∈ ℝ+ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dp2 32846 | . 2 ⊢ _𝐴𝐵 = (𝐴 + (𝐵 / ;10)) | |
| 2 | rpdp2cl.a | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
| 3 | 2 | nn0rei 12512 | . . . 4 ⊢ 𝐴 ∈ ℝ |
| 4 | rpssre 13016 | . . . . 5 ⊢ ℝ+ ⊆ ℝ | |
| 5 | rpdp2cl.b | . . . . . 6 ⊢ 𝐵 ∈ ℝ+ | |
| 6 | 10nn 12724 | . . . . . . 7 ⊢ ;10 ∈ ℕ | |
| 7 | nnrp 13020 | . . . . . . 7 ⊢ (;10 ∈ ℕ → ;10 ∈ ℝ+) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ ;10 ∈ ℝ+ |
| 9 | rpdivcl 13034 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ+ ∧ ;10 ∈ ℝ+) → (𝐵 / ;10) ∈ ℝ+) | |
| 10 | 5, 8, 9 | mp2an 692 | . . . . 5 ⊢ (𝐵 / ;10) ∈ ℝ+ |
| 11 | 4, 10 | sselii 3955 | . . . 4 ⊢ (𝐵 / ;10) ∈ ℝ |
| 12 | readdcl 11212 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 / ;10) ∈ ℝ) → (𝐴 + (𝐵 / ;10)) ∈ ℝ) | |
| 13 | 3, 11, 12 | mp2an 692 | . . 3 ⊢ (𝐴 + (𝐵 / ;10)) ∈ ℝ |
| 14 | 3, 11 | pm3.2i 470 | . . . 4 ⊢ (𝐴 ∈ ℝ ∧ (𝐵 / ;10) ∈ ℝ) |
| 15 | 2 | nn0ge0i 12528 | . . . . 5 ⊢ 0 ≤ 𝐴 |
| 16 | rpgt0 13021 | . . . . . 6 ⊢ ((𝐵 / ;10) ∈ ℝ+ → 0 < (𝐵 / ;10)) | |
| 17 | 10, 16 | ax-mp 5 | . . . . 5 ⊢ 0 < (𝐵 / ;10) |
| 18 | 15, 17 | pm3.2i 470 | . . . 4 ⊢ (0 ≤ 𝐴 ∧ 0 < (𝐵 / ;10)) |
| 19 | addgegt0 11724 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ (𝐵 / ;10) ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐵 / ;10))) → 0 < (𝐴 + (𝐵 / ;10))) | |
| 20 | 14, 18, 19 | mp2an 692 | . . 3 ⊢ 0 < (𝐴 + (𝐵 / ;10)) |
| 21 | elrp 13010 | . . 3 ⊢ ((𝐴 + (𝐵 / ;10)) ∈ ℝ+ ↔ ((𝐴 + (𝐵 / ;10)) ∈ ℝ ∧ 0 < (𝐴 + (𝐵 / ;10)))) | |
| 22 | 13, 20, 21 | mpbir2an 711 | . 2 ⊢ (𝐴 + (𝐵 / ;10)) ∈ ℝ+ |
| 23 | 1, 22 | eqeltri 2830 | 1 ⊢ _𝐴𝐵 ∈ ℝ+ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2108 class class class wbr 5119 (class class class)co 7405 ℝcr 11128 0cc0 11129 1c1 11130 + caddc 11132 < clt 11269 ≤ cle 11270 / cdiv 11894 ℕcn 12240 ℕ0cn0 12501 ;cdc 12708 ℝ+crp 13008 _cdp2 32845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-dec 12709 df-rp 13009 df-dp2 32846 |
| This theorem is referenced by: rpdpcl 32877 dpexpp1 32882 hgt750lemd 34680 hgt750lem 34683 hgt750lem2 34684 hgt750leme 34690 |
| Copyright terms: Public domain | W3C validator |