![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rpdp2cl | Structured version Visualization version GIF version |
Description: Closure for a decimal fraction in the positive real numbers. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
Ref | Expression |
---|---|
rpdp2cl.a | ⊢ 𝐴 ∈ ℕ0 |
rpdp2cl.b | ⊢ 𝐵 ∈ ℝ+ |
Ref | Expression |
---|---|
rpdp2cl | ⊢ _𝐴𝐵 ∈ ℝ+ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dp2 32505 | . 2 ⊢ _𝐴𝐵 = (𝐴 + (𝐵 / ;10)) | |
2 | rpdp2cl.a | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
3 | 2 | nn0rei 12480 | . . . 4 ⊢ 𝐴 ∈ ℝ |
4 | rpssre 12978 | . . . . 5 ⊢ ℝ+ ⊆ ℝ | |
5 | rpdp2cl.b | . . . . . 6 ⊢ 𝐵 ∈ ℝ+ | |
6 | 10nn 12690 | . . . . . . 7 ⊢ ;10 ∈ ℕ | |
7 | nnrp 12982 | . . . . . . 7 ⊢ (;10 ∈ ℕ → ;10 ∈ ℝ+) | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ ;10 ∈ ℝ+ |
9 | rpdivcl 12996 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ+ ∧ ;10 ∈ ℝ+) → (𝐵 / ;10) ∈ ℝ+) | |
10 | 5, 8, 9 | mp2an 689 | . . . . 5 ⊢ (𝐵 / ;10) ∈ ℝ+ |
11 | 4, 10 | sselii 3971 | . . . 4 ⊢ (𝐵 / ;10) ∈ ℝ |
12 | readdcl 11189 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ (𝐵 / ;10) ∈ ℝ) → (𝐴 + (𝐵 / ;10)) ∈ ℝ) | |
13 | 3, 11, 12 | mp2an 689 | . . 3 ⊢ (𝐴 + (𝐵 / ;10)) ∈ ℝ |
14 | 3, 11 | pm3.2i 470 | . . . 4 ⊢ (𝐴 ∈ ℝ ∧ (𝐵 / ;10) ∈ ℝ) |
15 | 2 | nn0ge0i 12496 | . . . . 5 ⊢ 0 ≤ 𝐴 |
16 | rpgt0 12983 | . . . . . 6 ⊢ ((𝐵 / ;10) ∈ ℝ+ → 0 < (𝐵 / ;10)) | |
17 | 10, 16 | ax-mp 5 | . . . . 5 ⊢ 0 < (𝐵 / ;10) |
18 | 15, 17 | pm3.2i 470 | . . . 4 ⊢ (0 ≤ 𝐴 ∧ 0 < (𝐵 / ;10)) |
19 | addgegt0 11698 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ (𝐵 / ;10) ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐵 / ;10))) → 0 < (𝐴 + (𝐵 / ;10))) | |
20 | 14, 18, 19 | mp2an 689 | . . 3 ⊢ 0 < (𝐴 + (𝐵 / ;10)) |
21 | elrp 12973 | . . 3 ⊢ ((𝐴 + (𝐵 / ;10)) ∈ ℝ+ ↔ ((𝐴 + (𝐵 / ;10)) ∈ ℝ ∧ 0 < (𝐴 + (𝐵 / ;10)))) | |
22 | 13, 20, 21 | mpbir2an 708 | . 2 ⊢ (𝐴 + (𝐵 / ;10)) ∈ ℝ+ |
23 | 1, 22 | eqeltri 2821 | 1 ⊢ _𝐴𝐵 ∈ ℝ+ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2098 class class class wbr 5138 (class class class)co 7401 ℝcr 11105 0cc0 11106 1c1 11107 + caddc 11109 < clt 11245 ≤ cle 11246 / cdiv 11868 ℕcn 12209 ℕ0cn0 12469 ;cdc 12674 ℝ+crp 12971 _cdp2 32504 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 df-8 12278 df-9 12279 df-n0 12470 df-dec 12675 df-rp 12972 df-dp2 32505 |
This theorem is referenced by: rpdpcl 32536 dpexpp1 32541 hgt750lemd 34149 hgt750lem 34152 hgt750lem2 34153 hgt750leme 34159 |
Copyright terms: Public domain | W3C validator |