| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnrp | Structured version Visualization version GIF version | ||
| Description: A positive integer is a positive real. (Contributed by NM, 28-Nov-2008.) |
| Ref | Expression |
|---|---|
| nnrp | ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre 12274 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
| 2 | nngt0 12298 | . 2 ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) | |
| 3 | elrp 13037 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 4 | 1, 2, 3 | sylanbrc 583 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+) |
| Copyright terms: Public domain | W3C validator |