Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnrp | Structured version Visualization version GIF version |
Description: A positive integer is a positive real. (Contributed by NM, 28-Nov-2008.) |
Ref | Expression |
---|---|
nnrp | ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 11980 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
2 | nngt0 12004 | . 2 ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) | |
3 | elrp 12732 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
4 | 1, 2, 3 | sylanbrc 583 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+) |
Copyright terms: Public domain | W3C validator |