| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difrp | Structured version Visualization version GIF version | ||
| Description: Two ways to say one number is less than another. (Contributed by Mario Carneiro, 21-May-2014.) |
| Ref | Expression |
|---|---|
| difrp | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐵 − 𝐴) ∈ ℝ+)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | posdif 11671 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) | |
| 2 | resubcl 11486 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 − 𝐴) ∈ ℝ) | |
| 3 | 2 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 − 𝐴) ∈ ℝ) |
| 4 | elrp 12953 | . . . 4 ⊢ ((𝐵 − 𝐴) ∈ ℝ+ ↔ ((𝐵 − 𝐴) ∈ ℝ ∧ 0 < (𝐵 − 𝐴))) | |
| 5 | 4 | baib 535 | . . 3 ⊢ ((𝐵 − 𝐴) ∈ ℝ → ((𝐵 − 𝐴) ∈ ℝ+ ↔ 0 < (𝐵 − 𝐴))) |
| 6 | 3, 5 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 − 𝐴) ∈ ℝ+ ↔ 0 < (𝐵 − 𝐴))) |
| 7 | 1, 6 | bitr4d 282 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐵 − 𝐴) ∈ ℝ+)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 ℝcr 11067 0cc0 11068 < clt 11208 − cmin 11405 ℝ+crp 12951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-sub 11407 df-neg 11408 df-rp 12952 |
| This theorem is referenced by: xralrple 13165 lincmb01cmp 13456 iccf1o 13457 expmulnbnd 14200 fsumlt 15766 expcnv 15830 blssps 24312 blss 24313 icchmeo 24838 icchmeoOLD 24839 icopnfcnv 24840 icopnfhmeo 24841 ivthlem2 25353 ivthlem3 25354 c1liplem1 25901 lhop1lem 25918 ftc1lem4 25946 aaliou3lem7 26257 abelthlem7 26348 cosordlem 26439 logdivlti 26529 cxpaddlelem 26661 atantan 26833 birthdaylem3 26863 lgamgulmlem2 26940 lgamgulmlem3 26941 chtppilimlem2 27385 pntrlog2bndlem5 27492 pntlemd 27505 pntlemc 27506 ostth2lem1 27529 ttgcontlem1 28812 lt2addrd 32674 signsplypnf 34541 knoppndvlem20 36519 ftc1cnnclem 37685 fltnltalem 42650 fltnlta 42651 cvgdvgrat 44302 sge0gtfsumgt 46441 hoidmvlelem3 46595 vonioolem1 46678 smfmullem1 46789 smfmullem2 46790 smfmullem3 46791 difmodm1lt 47360 |
| Copyright terms: Public domain | W3C validator |