MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difrp Structured version   Visualization version   GIF version

Theorem difrp 12933
Description: Two ways to say one number is less than another. (Contributed by Mario Carneiro, 21-May-2014.)
Assertion
Ref Expression
difrp ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐵𝐴) ∈ ℝ+))

Proof of Theorem difrp
StepHypRef Expression
1 posdif 11613 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
2 resubcl 11428 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴) ∈ ℝ)
32ancoms 458 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵𝐴) ∈ ℝ)
4 elrp 12895 . . . 4 ((𝐵𝐴) ∈ ℝ+ ↔ ((𝐵𝐴) ∈ ℝ ∧ 0 < (𝐵𝐴)))
54baib 535 . . 3 ((𝐵𝐴) ∈ ℝ → ((𝐵𝐴) ∈ ℝ+ ↔ 0 < (𝐵𝐴)))
63, 5syl 17 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵𝐴) ∈ ℝ+ ↔ 0 < (𝐵𝐴)))
71, 6bitr4d 282 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐵𝐴) ∈ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109   class class class wbr 5092  (class class class)co 7349  cr 11008  0cc0 11009   < clt 11149  cmin 11347  +crp 12893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-ltxr 11154  df-sub 11349  df-neg 11350  df-rp 12894
This theorem is referenced by:  xralrple  13107  lincmb01cmp  13398  iccf1o  13399  expmulnbnd  14142  fsumlt  15707  expcnv  15771  blssps  24310  blss  24311  icchmeo  24836  icchmeoOLD  24837  icopnfcnv  24838  icopnfhmeo  24839  ivthlem2  25351  ivthlem3  25352  c1liplem1  25899  lhop1lem  25916  ftc1lem4  25944  aaliou3lem7  26255  abelthlem7  26346  cosordlem  26437  logdivlti  26527  cxpaddlelem  26659  atantan  26831  birthdaylem3  26861  lgamgulmlem2  26938  lgamgulmlem3  26939  chtppilimlem2  27383  pntrlog2bndlem5  27490  pntlemd  27503  pntlemc  27504  ostth2lem1  27527  ttgcontlem1  28830  lt2addrd  32694  signsplypnf  34518  knoppndvlem20  36509  ftc1cnnclem  37675  fltnltalem  42639  fltnlta  42640  cvgdvgrat  44290  sge0gtfsumgt  46428  hoidmvlelem3  46582  vonioolem1  46665  smfmullem1  46776  smfmullem2  46777  smfmullem3  46778  difmodm1lt  47347
  Copyright terms: Public domain W3C validator