![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difrp | Structured version Visualization version GIF version |
Description: Two ways to say one number is less than another. (Contributed by Mario Carneiro, 21-May-2014.) |
Ref | Expression |
---|---|
difrp | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐵 − 𝐴) ∈ ℝ+)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | posdif 11711 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) | |
2 | resubcl 11528 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 − 𝐴) ∈ ℝ) | |
3 | 2 | ancoms 457 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 − 𝐴) ∈ ℝ) |
4 | elrp 12980 | . . . 4 ⊢ ((𝐵 − 𝐴) ∈ ℝ+ ↔ ((𝐵 − 𝐴) ∈ ℝ ∧ 0 < (𝐵 − 𝐴))) | |
5 | 4 | baib 534 | . . 3 ⊢ ((𝐵 − 𝐴) ∈ ℝ → ((𝐵 − 𝐴) ∈ ℝ+ ↔ 0 < (𝐵 − 𝐴))) |
6 | 3, 5 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 − 𝐴) ∈ ℝ+ ↔ 0 < (𝐵 − 𝐴))) |
7 | 1, 6 | bitr4d 281 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐵 − 𝐴) ∈ ℝ+)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2104 class class class wbr 5147 (class class class)co 7411 ℝcr 11111 0cc0 11112 < clt 11252 − cmin 11448 ℝ+crp 12978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-ltxr 11257 df-sub 11450 df-neg 11451 df-rp 12979 |
This theorem is referenced by: xralrple 13188 lincmb01cmp 13476 iccf1o 13477 expmulnbnd 14202 fsumlt 15750 expcnv 15814 blssps 24150 blss 24151 icchmeo 24685 icchmeoOLD 24686 icopnfcnv 24687 icopnfhmeo 24688 ivthlem2 25201 ivthlem3 25202 c1liplem1 25748 lhop1lem 25765 ftc1lem4 25791 aaliou3lem7 26098 abelthlem7 26186 cosordlem 26275 logdivlti 26364 cxpaddlelem 26495 atantan 26664 birthdaylem3 26694 lgamgulmlem2 26770 lgamgulmlem3 26771 chtppilimlem2 27213 pntrlog2bndlem5 27320 pntlemd 27333 pntlemc 27334 ostth2lem1 27357 ttgcontlem1 28409 lt2addrd 32231 signsplypnf 33859 knoppndvlem20 35710 ftc1cnnclem 36862 fltnltalem 41706 fltnlta 41707 cvgdvgrat 43374 sge0gtfsumgt 45457 hoidmvlelem3 45611 vonioolem1 45694 smfmullem1 45805 smfmullem2 45806 smfmullem3 45807 |
Copyright terms: Public domain | W3C validator |