MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpaddlelem Structured version   Visualization version   GIF version

Theorem cxpaddlelem 24932
Description: Lemma for cxpaddle 24933. (Contributed by Mario Carneiro, 2-Aug-2014.)
Hypotheses
Ref Expression
cxpaddlelem.1 (𝜑𝐴 ∈ ℝ)
cxpaddlelem.2 (𝜑 → 0 ≤ 𝐴)
cxpaddlelem.3 (𝜑𝐴 ≤ 1)
cxpaddlelem.4 (𝜑𝐵 ∈ ℝ+)
cxpaddlelem.5 (𝜑𝐵 ≤ 1)
Assertion
Ref Expression
cxpaddlelem (𝜑𝐴 ≤ (𝐴𝑐𝐵))

Proof of Theorem cxpaddlelem
StepHypRef Expression
1 cxpaddlelem.1 . . . . . 6 (𝜑𝐴 ∈ ℝ)
2 cxpaddlelem.2 . . . . . 6 (𝜑 → 0 ≤ 𝐴)
3 1re 10376 . . . . . . 7 1 ∈ ℝ
4 cxpaddlelem.4 . . . . . . . 8 (𝜑𝐵 ∈ ℝ+)
54rpred 12181 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
6 resubcl 10687 . . . . . . 7 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 − 𝐵) ∈ ℝ)
73, 5, 6sylancr 581 . . . . . 6 (𝜑 → (1 − 𝐵) ∈ ℝ)
81, 2, 7recxpcld 24906 . . . . 5 (𝜑 → (𝐴𝑐(1 − 𝐵)) ∈ ℝ)
98adantr 474 . . . 4 ((𝜑 ∧ 0 < 𝐴) → (𝐴𝑐(1 − 𝐵)) ∈ ℝ)
10 1red 10377 . . . 4 ((𝜑 ∧ 0 < 𝐴) → 1 ∈ ℝ)
11 recxpcl 24858 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐵 ∈ ℝ) → (𝐴𝑐𝐵) ∈ ℝ)
12 cxpge0 24866 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐵 ∈ ℝ) → 0 ≤ (𝐴𝑐𝐵))
1311, 12jca 507 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐵 ∈ ℝ) → ((𝐴𝑐𝐵) ∈ ℝ ∧ 0 ≤ (𝐴𝑐𝐵)))
141, 2, 5, 13syl3anc 1439 . . . . 5 (𝜑 → ((𝐴𝑐𝐵) ∈ ℝ ∧ 0 ≤ (𝐴𝑐𝐵)))
1514adantr 474 . . . 4 ((𝜑 ∧ 0 < 𝐴) → ((𝐴𝑐𝐵) ∈ ℝ ∧ 0 ≤ (𝐴𝑐𝐵)))
16 cxpaddlelem.3 . . . . . . . 8 (𝜑𝐴 ≤ 1)
1716ad2antrr 716 . . . . . . 7 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 < 1) → 𝐴 ≤ 1)
181ad2antrr 716 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 < 1) → 𝐴 ∈ ℝ)
192ad2antrr 716 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 < 1) → 0 ≤ 𝐴)
20 1red 10377 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 < 1) → 1 ∈ ℝ)
21 0le1 10898 . . . . . . . . 9 0 ≤ 1
2221a1i 11 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 < 1) → 0 ≤ 1)
23 difrp 12177 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐵 < 1 ↔ (1 − 𝐵) ∈ ℝ+))
245, 3, 23sylancl 580 . . . . . . . . . 10 (𝜑 → (𝐵 < 1 ↔ (1 − 𝐵) ∈ ℝ+))
2524adantr 474 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → (𝐵 < 1 ↔ (1 − 𝐵) ∈ ℝ+))
2625biimpa 470 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 < 1) → (1 − 𝐵) ∈ ℝ+)
2718, 19, 20, 22, 26cxple2d 24910 . . . . . . 7 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 < 1) → (𝐴 ≤ 1 ↔ (𝐴𝑐(1 − 𝐵)) ≤ (1↑𝑐(1 − 𝐵))))
2817, 27mpbid 224 . . . . . 6 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 < 1) → (𝐴𝑐(1 − 𝐵)) ≤ (1↑𝑐(1 − 𝐵)))
297recnd 10405 . . . . . . . 8 (𝜑 → (1 − 𝐵) ∈ ℂ)
30291cxpd 24890 . . . . . . 7 (𝜑 → (1↑𝑐(1 − 𝐵)) = 1)
3130ad2antrr 716 . . . . . 6 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 < 1) → (1↑𝑐(1 − 𝐵)) = 1)
3228, 31breqtrd 4912 . . . . 5 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 < 1) → (𝐴𝑐(1 − 𝐵)) ≤ 1)
33 simpr 479 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 = 1) → 𝐵 = 1)
3433oveq2d 6938 . . . . . . . . 9 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 = 1) → (1 − 𝐵) = (1 − 1))
35 1m1e0 11447 . . . . . . . . 9 (1 − 1) = 0
3634, 35syl6eq 2830 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 = 1) → (1 − 𝐵) = 0)
3736oveq2d 6938 . . . . . . 7 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 = 1) → (𝐴𝑐(1 − 𝐵)) = (𝐴𝑐0))
381recnd 10405 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
3938ad2antrr 716 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 = 1) → 𝐴 ∈ ℂ)
4039cxp0d 24888 . . . . . . 7 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 = 1) → (𝐴𝑐0) = 1)
4137, 40eqtrd 2814 . . . . . 6 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 = 1) → (𝐴𝑐(1 − 𝐵)) = 1)
42 1le1 11003 . . . . . 6 1 ≤ 1
4341, 42syl6eqbr 4925 . . . . 5 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 = 1) → (𝐴𝑐(1 − 𝐵)) ≤ 1)
44 cxpaddlelem.5 . . . . . . 7 (𝜑𝐵 ≤ 1)
45 leloe 10463 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐵 ≤ 1 ↔ (𝐵 < 1 ∨ 𝐵 = 1)))
465, 3, 45sylancl 580 . . . . . . 7 (𝜑 → (𝐵 ≤ 1 ↔ (𝐵 < 1 ∨ 𝐵 = 1)))
4744, 46mpbid 224 . . . . . 6 (𝜑 → (𝐵 < 1 ∨ 𝐵 = 1))
4847adantr 474 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → (𝐵 < 1 ∨ 𝐵 = 1))
4932, 43, 48mpjaodan 944 . . . 4 ((𝜑 ∧ 0 < 𝐴) → (𝐴𝑐(1 − 𝐵)) ≤ 1)
50 lemul1a 11231 . . . 4 ((((𝐴𝑐(1 − 𝐵)) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐴𝑐𝐵) ∈ ℝ ∧ 0 ≤ (𝐴𝑐𝐵))) ∧ (𝐴𝑐(1 − 𝐵)) ≤ 1) → ((𝐴𝑐(1 − 𝐵)) · (𝐴𝑐𝐵)) ≤ (1 · (𝐴𝑐𝐵)))
519, 10, 15, 49, 50syl31anc 1441 . . 3 ((𝜑 ∧ 0 < 𝐴) → ((𝐴𝑐(1 − 𝐵)) · (𝐴𝑐𝐵)) ≤ (1 · (𝐴𝑐𝐵)))
52 ax-1cn 10330 . . . . . . 7 1 ∈ ℂ
535recnd 10405 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
54 npcan 10632 . . . . . . 7 ((1 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 − 𝐵) + 𝐵) = 1)
5552, 53, 54sylancr 581 . . . . . 6 (𝜑 → ((1 − 𝐵) + 𝐵) = 1)
5655adantr 474 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → ((1 − 𝐵) + 𝐵) = 1)
5756oveq2d 6938 . . . 4 ((𝜑 ∧ 0 < 𝐴) → (𝐴𝑐((1 − 𝐵) + 𝐵)) = (𝐴𝑐1))
5838adantr 474 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ∈ ℂ)
591anim1i 608 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
60 elrp 12139 . . . . . . 7 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
6159, 60sylibr 226 . . . . . 6 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ∈ ℝ+)
6261rpne0d 12186 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ≠ 0)
6329adantr 474 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → (1 − 𝐵) ∈ ℂ)
6453adantr 474 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → 𝐵 ∈ ℂ)
6558, 62, 63, 64cxpaddd 24900 . . . 4 ((𝜑 ∧ 0 < 𝐴) → (𝐴𝑐((1 − 𝐵) + 𝐵)) = ((𝐴𝑐(1 − 𝐵)) · (𝐴𝑐𝐵)))
6638cxp1d 24889 . . . . 5 (𝜑 → (𝐴𝑐1) = 𝐴)
6766adantr 474 . . . 4 ((𝜑 ∧ 0 < 𝐴) → (𝐴𝑐1) = 𝐴)
6857, 65, 673eqtr3d 2822 . . 3 ((𝜑 ∧ 0 < 𝐴) → ((𝐴𝑐(1 − 𝐵)) · (𝐴𝑐𝐵)) = 𝐴)
6938, 53cxpcld 24891 . . . . 5 (𝜑 → (𝐴𝑐𝐵) ∈ ℂ)
7069mulid2d 10395 . . . 4 (𝜑 → (1 · (𝐴𝑐𝐵)) = (𝐴𝑐𝐵))
7170adantr 474 . . 3 ((𝜑 ∧ 0 < 𝐴) → (1 · (𝐴𝑐𝐵)) = (𝐴𝑐𝐵))
7251, 68, 713brtr3d 4917 . 2 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ≤ (𝐴𝑐𝐵))
731, 2, 5cxpge0d 24907 . . . 4 (𝜑 → 0 ≤ (𝐴𝑐𝐵))
74 breq1 4889 . . . 4 (0 = 𝐴 → (0 ≤ (𝐴𝑐𝐵) ↔ 𝐴 ≤ (𝐴𝑐𝐵)))
7573, 74syl5ibcom 237 . . 3 (𝜑 → (0 = 𝐴𝐴 ≤ (𝐴𝑐𝐵)))
7675imp 397 . 2 ((𝜑 ∧ 0 = 𝐴) → 𝐴 ≤ (𝐴𝑐𝐵))
77 0re 10378 . . . 4 0 ∈ ℝ
78 leloe 10463 . . . 4 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
7977, 1, 78sylancr 581 . . 3 (𝜑 → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
802, 79mpbid 224 . 2 (𝜑 → (0 < 𝐴 ∨ 0 = 𝐴))
8172, 76, 80mpjaodan 944 1 (𝜑𝐴 ≤ (𝐴𝑐𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wo 836  w3a 1071   = wceq 1601  wcel 2107   class class class wbr 4886  (class class class)co 6922  cc 10270  cr 10271  0cc0 10272  1c1 10273   + caddc 10275   · cmul 10277   < clt 10411  cle 10412  cmin 10606  +crp 12137  𝑐ccxp 24739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-ioc 12492  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-fl 12912  df-mod 12988  df-seq 13120  df-exp 13179  df-fac 13379  df-bc 13408  df-hash 13436  df-shft 14214  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-limsup 14610  df-clim 14627  df-rlim 14628  df-sum 14825  df-ef 15200  df-sin 15202  df-cos 15203  df-pi 15205  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-rest 16469  df-topn 16470  df-0g 16488  df-gsum 16489  df-topgen 16490  df-pt 16491  df-prds 16494  df-xrs 16548  df-qtop 16553  df-imas 16554  df-xps 16556  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-mulg 17928  df-cntz 18133  df-cmn 18581  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-fbas 20139  df-fg 20140  df-cnfld 20143  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cld 21231  df-ntr 21232  df-cls 21233  df-nei 21310  df-lp 21348  df-perf 21349  df-cn 21439  df-cnp 21440  df-haus 21527  df-tx 21774  df-hmeo 21967  df-fil 22058  df-fm 22150  df-flim 22151  df-flf 22152  df-xms 22533  df-ms 22534  df-tms 22535  df-cncf 23089  df-limc 24067  df-dv 24068  df-log 24740  df-cxp 24741
This theorem is referenced by:  cxpaddle  24933
  Copyright terms: Public domain W3C validator