MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpaddlelem Structured version   Visualization version   GIF version

Theorem cxpaddlelem 26779
Description: Lemma for cxpaddle 26780. (Contributed by Mario Carneiro, 2-Aug-2014.)
Hypotheses
Ref Expression
cxpaddlelem.1 (𝜑𝐴 ∈ ℝ)
cxpaddlelem.2 (𝜑 → 0 ≤ 𝐴)
cxpaddlelem.3 (𝜑𝐴 ≤ 1)
cxpaddlelem.4 (𝜑𝐵 ∈ ℝ+)
cxpaddlelem.5 (𝜑𝐵 ≤ 1)
Assertion
Ref Expression
cxpaddlelem (𝜑𝐴 ≤ (𝐴𝑐𝐵))

Proof of Theorem cxpaddlelem
StepHypRef Expression
1 cxpaddlelem.1 . . . . . 6 (𝜑𝐴 ∈ ℝ)
2 cxpaddlelem.2 . . . . . 6 (𝜑 → 0 ≤ 𝐴)
3 1re 11264 . . . . . . 7 1 ∈ ℝ
4 cxpaddlelem.4 . . . . . . . 8 (𝜑𝐵 ∈ ℝ+)
54rpred 13070 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
6 resubcl 11574 . . . . . . 7 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 − 𝐵) ∈ ℝ)
73, 5, 6sylancr 585 . . . . . 6 (𝜑 → (1 − 𝐵) ∈ ℝ)
81, 2, 7recxpcld 26750 . . . . 5 (𝜑 → (𝐴𝑐(1 − 𝐵)) ∈ ℝ)
98adantr 479 . . . 4 ((𝜑 ∧ 0 < 𝐴) → (𝐴𝑐(1 − 𝐵)) ∈ ℝ)
10 1red 11265 . . . 4 ((𝜑 ∧ 0 < 𝐴) → 1 ∈ ℝ)
11 recxpcl 26702 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐵 ∈ ℝ) → (𝐴𝑐𝐵) ∈ ℝ)
12 cxpge0 26710 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐵 ∈ ℝ) → 0 ≤ (𝐴𝑐𝐵))
1311, 12jca 510 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐵 ∈ ℝ) → ((𝐴𝑐𝐵) ∈ ℝ ∧ 0 ≤ (𝐴𝑐𝐵)))
141, 2, 5, 13syl3anc 1368 . . . . 5 (𝜑 → ((𝐴𝑐𝐵) ∈ ℝ ∧ 0 ≤ (𝐴𝑐𝐵)))
1514adantr 479 . . . 4 ((𝜑 ∧ 0 < 𝐴) → ((𝐴𝑐𝐵) ∈ ℝ ∧ 0 ≤ (𝐴𝑐𝐵)))
16 cxpaddlelem.3 . . . . . . . 8 (𝜑𝐴 ≤ 1)
1716ad2antrr 724 . . . . . . 7 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 < 1) → 𝐴 ≤ 1)
181ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 < 1) → 𝐴 ∈ ℝ)
192ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 < 1) → 0 ≤ 𝐴)
20 1red 11265 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 < 1) → 1 ∈ ℝ)
21 0le1 11787 . . . . . . . . 9 0 ≤ 1
2221a1i 11 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 < 1) → 0 ≤ 1)
23 difrp 13066 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐵 < 1 ↔ (1 − 𝐵) ∈ ℝ+))
245, 3, 23sylancl 584 . . . . . . . . . 10 (𝜑 → (𝐵 < 1 ↔ (1 − 𝐵) ∈ ℝ+))
2524adantr 479 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → (𝐵 < 1 ↔ (1 − 𝐵) ∈ ℝ+))
2625biimpa 475 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 < 1) → (1 − 𝐵) ∈ ℝ+)
2718, 19, 20, 22, 26cxple2d 26754 . . . . . . 7 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 < 1) → (𝐴 ≤ 1 ↔ (𝐴𝑐(1 − 𝐵)) ≤ (1↑𝑐(1 − 𝐵))))
2817, 27mpbid 231 . . . . . 6 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 < 1) → (𝐴𝑐(1 − 𝐵)) ≤ (1↑𝑐(1 − 𝐵)))
297recnd 11292 . . . . . . . 8 (𝜑 → (1 − 𝐵) ∈ ℂ)
30291cxpd 26734 . . . . . . 7 (𝜑 → (1↑𝑐(1 − 𝐵)) = 1)
3130ad2antrr 724 . . . . . 6 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 < 1) → (1↑𝑐(1 − 𝐵)) = 1)
3228, 31breqtrd 5179 . . . . 5 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 < 1) → (𝐴𝑐(1 − 𝐵)) ≤ 1)
33 simpr 483 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 = 1) → 𝐵 = 1)
3433oveq2d 7440 . . . . . . . . 9 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 = 1) → (1 − 𝐵) = (1 − 1))
35 1m1e0 12336 . . . . . . . . 9 (1 − 1) = 0
3634, 35eqtrdi 2782 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 = 1) → (1 − 𝐵) = 0)
3736oveq2d 7440 . . . . . . 7 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 = 1) → (𝐴𝑐(1 − 𝐵)) = (𝐴𝑐0))
381recnd 11292 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
3938ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 = 1) → 𝐴 ∈ ℂ)
4039cxp0d 26732 . . . . . . 7 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 = 1) → (𝐴𝑐0) = 1)
4137, 40eqtrd 2766 . . . . . 6 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 = 1) → (𝐴𝑐(1 − 𝐵)) = 1)
42 1le1 11892 . . . . . 6 1 ≤ 1
4341, 42eqbrtrdi 5192 . . . . 5 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 = 1) → (𝐴𝑐(1 − 𝐵)) ≤ 1)
44 cxpaddlelem.5 . . . . . . 7 (𝜑𝐵 ≤ 1)
45 leloe 11350 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐵 ≤ 1 ↔ (𝐵 < 1 ∨ 𝐵 = 1)))
465, 3, 45sylancl 584 . . . . . . 7 (𝜑 → (𝐵 ≤ 1 ↔ (𝐵 < 1 ∨ 𝐵 = 1)))
4744, 46mpbid 231 . . . . . 6 (𝜑 → (𝐵 < 1 ∨ 𝐵 = 1))
4847adantr 479 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → (𝐵 < 1 ∨ 𝐵 = 1))
4932, 43, 48mpjaodan 956 . . . 4 ((𝜑 ∧ 0 < 𝐴) → (𝐴𝑐(1 − 𝐵)) ≤ 1)
50 lemul1a 12119 . . . 4 ((((𝐴𝑐(1 − 𝐵)) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐴𝑐𝐵) ∈ ℝ ∧ 0 ≤ (𝐴𝑐𝐵))) ∧ (𝐴𝑐(1 − 𝐵)) ≤ 1) → ((𝐴𝑐(1 − 𝐵)) · (𝐴𝑐𝐵)) ≤ (1 · (𝐴𝑐𝐵)))
519, 10, 15, 49, 50syl31anc 1370 . . 3 ((𝜑 ∧ 0 < 𝐴) → ((𝐴𝑐(1 − 𝐵)) · (𝐴𝑐𝐵)) ≤ (1 · (𝐴𝑐𝐵)))
52 ax-1cn 11216 . . . . . . 7 1 ∈ ℂ
535recnd 11292 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
54 npcan 11519 . . . . . . 7 ((1 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 − 𝐵) + 𝐵) = 1)
5552, 53, 54sylancr 585 . . . . . 6 (𝜑 → ((1 − 𝐵) + 𝐵) = 1)
5655adantr 479 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → ((1 − 𝐵) + 𝐵) = 1)
5756oveq2d 7440 . . . 4 ((𝜑 ∧ 0 < 𝐴) → (𝐴𝑐((1 − 𝐵) + 𝐵)) = (𝐴𝑐1))
5838adantr 479 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ∈ ℂ)
591anim1i 613 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
60 elrp 13030 . . . . . . 7 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
6159, 60sylibr 233 . . . . . 6 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ∈ ℝ+)
6261rpne0d 13075 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ≠ 0)
6329adantr 479 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → (1 − 𝐵) ∈ ℂ)
6453adantr 479 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → 𝐵 ∈ ℂ)
6558, 62, 63, 64cxpaddd 26744 . . . 4 ((𝜑 ∧ 0 < 𝐴) → (𝐴𝑐((1 − 𝐵) + 𝐵)) = ((𝐴𝑐(1 − 𝐵)) · (𝐴𝑐𝐵)))
6638cxp1d 26733 . . . . 5 (𝜑 → (𝐴𝑐1) = 𝐴)
6766adantr 479 . . . 4 ((𝜑 ∧ 0 < 𝐴) → (𝐴𝑐1) = 𝐴)
6857, 65, 673eqtr3d 2774 . . 3 ((𝜑 ∧ 0 < 𝐴) → ((𝐴𝑐(1 − 𝐵)) · (𝐴𝑐𝐵)) = 𝐴)
6938, 53cxpcld 26735 . . . . 5 (𝜑 → (𝐴𝑐𝐵) ∈ ℂ)
7069mullidd 11282 . . . 4 (𝜑 → (1 · (𝐴𝑐𝐵)) = (𝐴𝑐𝐵))
7170adantr 479 . . 3 ((𝜑 ∧ 0 < 𝐴) → (1 · (𝐴𝑐𝐵)) = (𝐴𝑐𝐵))
7251, 68, 713brtr3d 5184 . 2 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ≤ (𝐴𝑐𝐵))
731, 2, 5cxpge0d 26751 . . . 4 (𝜑 → 0 ≤ (𝐴𝑐𝐵))
74 breq1 5156 . . . 4 (0 = 𝐴 → (0 ≤ (𝐴𝑐𝐵) ↔ 𝐴 ≤ (𝐴𝑐𝐵)))
7573, 74syl5ibcom 244 . . 3 (𝜑 → (0 = 𝐴𝐴 ≤ (𝐴𝑐𝐵)))
7675imp 405 . 2 ((𝜑 ∧ 0 = 𝐴) → 𝐴 ≤ (𝐴𝑐𝐵))
77 0re 11266 . . . 4 0 ∈ ℝ
78 leloe 11350 . . . 4 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
7977, 1, 78sylancr 585 . . 3 (𝜑 → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
802, 79mpbid 231 . 2 (𝜑 → (0 < 𝐴 ∨ 0 = 𝐴))
8172, 76, 80mpjaodan 956 1 (𝜑𝐴 ≤ (𝐴𝑐𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1534  wcel 2099   class class class wbr 5153  (class class class)co 7424  cc 11156  cr 11157  0cc0 11158  1c1 11159   + caddc 11161   · cmul 11163   < clt 11298  cle 11299  cmin 11494  +crp 13028  𝑐ccxp 26582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9684  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236  ax-addf 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-er 8734  df-map 8857  df-pm 8858  df-ixp 8927  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-fi 9454  df-sup 9485  df-inf 9486  df-oi 9553  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-dec 12730  df-uz 12875  df-q 12985  df-rp 13029  df-xneg 13146  df-xadd 13147  df-xmul 13148  df-ioo 13382  df-ioc 13383  df-ico 13384  df-icc 13385  df-fz 13539  df-fzo 13682  df-fl 13812  df-mod 13890  df-seq 14022  df-exp 14082  df-fac 14291  df-bc 14320  df-hash 14348  df-shft 15072  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-limsup 15473  df-clim 15490  df-rlim 15491  df-sum 15691  df-ef 16069  df-sin 16071  df-cos 16072  df-pi 16074  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-starv 17281  df-sca 17282  df-vsca 17283  df-ip 17284  df-tset 17285  df-ple 17286  df-ds 17288  df-unif 17289  df-hom 17290  df-cco 17291  df-rest 17437  df-topn 17438  df-0g 17456  df-gsum 17457  df-topgen 17458  df-pt 17459  df-prds 17462  df-xrs 17517  df-qtop 17522  df-imas 17523  df-xps 17525  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-submnd 18774  df-mulg 19062  df-cntz 19311  df-cmn 19780  df-psmet 21335  df-xmet 21336  df-met 21337  df-bl 21338  df-mopn 21339  df-fbas 21340  df-fg 21341  df-cnfld 21344  df-top 22887  df-topon 22904  df-topsp 22926  df-bases 22940  df-cld 23014  df-ntr 23015  df-cls 23016  df-nei 23093  df-lp 23131  df-perf 23132  df-cn 23222  df-cnp 23223  df-haus 23310  df-tx 23557  df-hmeo 23750  df-fil 23841  df-fm 23933  df-flim 23934  df-flf 23935  df-xms 24317  df-ms 24318  df-tms 24319  df-cncf 24889  df-limc 25886  df-dv 25887  df-log 26583  df-cxp 26584
This theorem is referenced by:  cxpaddle  26780
  Copyright terms: Public domain W3C validator