MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpaddlelem Structured version   Visualization version   GIF version

Theorem cxpaddlelem 26794
Description: Lemma for cxpaddle 26795. (Contributed by Mario Carneiro, 2-Aug-2014.)
Hypotheses
Ref Expression
cxpaddlelem.1 (𝜑𝐴 ∈ ℝ)
cxpaddlelem.2 (𝜑 → 0 ≤ 𝐴)
cxpaddlelem.3 (𝜑𝐴 ≤ 1)
cxpaddlelem.4 (𝜑𝐵 ∈ ℝ+)
cxpaddlelem.5 (𝜑𝐵 ≤ 1)
Assertion
Ref Expression
cxpaddlelem (𝜑𝐴 ≤ (𝐴𝑐𝐵))

Proof of Theorem cxpaddlelem
StepHypRef Expression
1 cxpaddlelem.1 . . . . . 6 (𝜑𝐴 ∈ ℝ)
2 cxpaddlelem.2 . . . . . 6 (𝜑 → 0 ≤ 𝐴)
3 1re 11261 . . . . . . 7 1 ∈ ℝ
4 cxpaddlelem.4 . . . . . . . 8 (𝜑𝐵 ∈ ℝ+)
54rpred 13077 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
6 resubcl 11573 . . . . . . 7 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 − 𝐵) ∈ ℝ)
73, 5, 6sylancr 587 . . . . . 6 (𝜑 → (1 − 𝐵) ∈ ℝ)
81, 2, 7recxpcld 26765 . . . . 5 (𝜑 → (𝐴𝑐(1 − 𝐵)) ∈ ℝ)
98adantr 480 . . . 4 ((𝜑 ∧ 0 < 𝐴) → (𝐴𝑐(1 − 𝐵)) ∈ ℝ)
10 1red 11262 . . . 4 ((𝜑 ∧ 0 < 𝐴) → 1 ∈ ℝ)
11 recxpcl 26717 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐵 ∈ ℝ) → (𝐴𝑐𝐵) ∈ ℝ)
12 cxpge0 26725 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐵 ∈ ℝ) → 0 ≤ (𝐴𝑐𝐵))
1311, 12jca 511 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐵 ∈ ℝ) → ((𝐴𝑐𝐵) ∈ ℝ ∧ 0 ≤ (𝐴𝑐𝐵)))
141, 2, 5, 13syl3anc 1373 . . . . 5 (𝜑 → ((𝐴𝑐𝐵) ∈ ℝ ∧ 0 ≤ (𝐴𝑐𝐵)))
1514adantr 480 . . . 4 ((𝜑 ∧ 0 < 𝐴) → ((𝐴𝑐𝐵) ∈ ℝ ∧ 0 ≤ (𝐴𝑐𝐵)))
16 cxpaddlelem.3 . . . . . . . 8 (𝜑𝐴 ≤ 1)
1716ad2antrr 726 . . . . . . 7 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 < 1) → 𝐴 ≤ 1)
181ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 < 1) → 𝐴 ∈ ℝ)
192ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 < 1) → 0 ≤ 𝐴)
20 1red 11262 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 < 1) → 1 ∈ ℝ)
21 0le1 11786 . . . . . . . . 9 0 ≤ 1
2221a1i 11 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 < 1) → 0 ≤ 1)
23 difrp 13073 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐵 < 1 ↔ (1 − 𝐵) ∈ ℝ+))
245, 3, 23sylancl 586 . . . . . . . . . 10 (𝜑 → (𝐵 < 1 ↔ (1 − 𝐵) ∈ ℝ+))
2524adantr 480 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → (𝐵 < 1 ↔ (1 − 𝐵) ∈ ℝ+))
2625biimpa 476 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 < 1) → (1 − 𝐵) ∈ ℝ+)
2718, 19, 20, 22, 26cxple2d 26769 . . . . . . 7 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 < 1) → (𝐴 ≤ 1 ↔ (𝐴𝑐(1 − 𝐵)) ≤ (1↑𝑐(1 − 𝐵))))
2817, 27mpbid 232 . . . . . 6 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 < 1) → (𝐴𝑐(1 − 𝐵)) ≤ (1↑𝑐(1 − 𝐵)))
297recnd 11289 . . . . . . . 8 (𝜑 → (1 − 𝐵) ∈ ℂ)
30291cxpd 26749 . . . . . . 7 (𝜑 → (1↑𝑐(1 − 𝐵)) = 1)
3130ad2antrr 726 . . . . . 6 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 < 1) → (1↑𝑐(1 − 𝐵)) = 1)
3228, 31breqtrd 5169 . . . . 5 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 < 1) → (𝐴𝑐(1 − 𝐵)) ≤ 1)
33 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 = 1) → 𝐵 = 1)
3433oveq2d 7447 . . . . . . . . 9 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 = 1) → (1 − 𝐵) = (1 − 1))
35 1m1e0 12338 . . . . . . . . 9 (1 − 1) = 0
3634, 35eqtrdi 2793 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 = 1) → (1 − 𝐵) = 0)
3736oveq2d 7447 . . . . . . 7 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 = 1) → (𝐴𝑐(1 − 𝐵)) = (𝐴𝑐0))
381recnd 11289 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
3938ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 = 1) → 𝐴 ∈ ℂ)
4039cxp0d 26747 . . . . . . 7 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 = 1) → (𝐴𝑐0) = 1)
4137, 40eqtrd 2777 . . . . . 6 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 = 1) → (𝐴𝑐(1 − 𝐵)) = 1)
42 1le1 11891 . . . . . 6 1 ≤ 1
4341, 42eqbrtrdi 5182 . . . . 5 (((𝜑 ∧ 0 < 𝐴) ∧ 𝐵 = 1) → (𝐴𝑐(1 − 𝐵)) ≤ 1)
44 cxpaddlelem.5 . . . . . . 7 (𝜑𝐵 ≤ 1)
45 leloe 11347 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐵 ≤ 1 ↔ (𝐵 < 1 ∨ 𝐵 = 1)))
465, 3, 45sylancl 586 . . . . . . 7 (𝜑 → (𝐵 ≤ 1 ↔ (𝐵 < 1 ∨ 𝐵 = 1)))
4744, 46mpbid 232 . . . . . 6 (𝜑 → (𝐵 < 1 ∨ 𝐵 = 1))
4847adantr 480 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → (𝐵 < 1 ∨ 𝐵 = 1))
4932, 43, 48mpjaodan 961 . . . 4 ((𝜑 ∧ 0 < 𝐴) → (𝐴𝑐(1 − 𝐵)) ≤ 1)
50 lemul1a 12121 . . . 4 ((((𝐴𝑐(1 − 𝐵)) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐴𝑐𝐵) ∈ ℝ ∧ 0 ≤ (𝐴𝑐𝐵))) ∧ (𝐴𝑐(1 − 𝐵)) ≤ 1) → ((𝐴𝑐(1 − 𝐵)) · (𝐴𝑐𝐵)) ≤ (1 · (𝐴𝑐𝐵)))
519, 10, 15, 49, 50syl31anc 1375 . . 3 ((𝜑 ∧ 0 < 𝐴) → ((𝐴𝑐(1 − 𝐵)) · (𝐴𝑐𝐵)) ≤ (1 · (𝐴𝑐𝐵)))
52 ax-1cn 11213 . . . . . . 7 1 ∈ ℂ
535recnd 11289 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
54 npcan 11517 . . . . . . 7 ((1 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 − 𝐵) + 𝐵) = 1)
5552, 53, 54sylancr 587 . . . . . 6 (𝜑 → ((1 − 𝐵) + 𝐵) = 1)
5655adantr 480 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → ((1 − 𝐵) + 𝐵) = 1)
5756oveq2d 7447 . . . 4 ((𝜑 ∧ 0 < 𝐴) → (𝐴𝑐((1 − 𝐵) + 𝐵)) = (𝐴𝑐1))
5838adantr 480 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ∈ ℂ)
591anim1i 615 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
60 elrp 13036 . . . . . . 7 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
6159, 60sylibr 234 . . . . . 6 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ∈ ℝ+)
6261rpne0d 13082 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ≠ 0)
6329adantr 480 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → (1 − 𝐵) ∈ ℂ)
6453adantr 480 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → 𝐵 ∈ ℂ)
6558, 62, 63, 64cxpaddd 26759 . . . 4 ((𝜑 ∧ 0 < 𝐴) → (𝐴𝑐((1 − 𝐵) + 𝐵)) = ((𝐴𝑐(1 − 𝐵)) · (𝐴𝑐𝐵)))
6638cxp1d 26748 . . . . 5 (𝜑 → (𝐴𝑐1) = 𝐴)
6766adantr 480 . . . 4 ((𝜑 ∧ 0 < 𝐴) → (𝐴𝑐1) = 𝐴)
6857, 65, 673eqtr3d 2785 . . 3 ((𝜑 ∧ 0 < 𝐴) → ((𝐴𝑐(1 − 𝐵)) · (𝐴𝑐𝐵)) = 𝐴)
6938, 53cxpcld 26750 . . . . 5 (𝜑 → (𝐴𝑐𝐵) ∈ ℂ)
7069mullidd 11279 . . . 4 (𝜑 → (1 · (𝐴𝑐𝐵)) = (𝐴𝑐𝐵))
7170adantr 480 . . 3 ((𝜑 ∧ 0 < 𝐴) → (1 · (𝐴𝑐𝐵)) = (𝐴𝑐𝐵))
7251, 68, 713brtr3d 5174 . 2 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ≤ (𝐴𝑐𝐵))
731, 2, 5cxpge0d 26766 . . . 4 (𝜑 → 0 ≤ (𝐴𝑐𝐵))
74 breq1 5146 . . . 4 (0 = 𝐴 → (0 ≤ (𝐴𝑐𝐵) ↔ 𝐴 ≤ (𝐴𝑐𝐵)))
7573, 74syl5ibcom 245 . . 3 (𝜑 → (0 = 𝐴𝐴 ≤ (𝐴𝑐𝐵)))
7675imp 406 . 2 ((𝜑 ∧ 0 = 𝐴) → 𝐴 ≤ (𝐴𝑐𝐵))
77 0re 11263 . . . 4 0 ∈ ℝ
78 leloe 11347 . . . 4 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
7977, 1, 78sylancr 587 . . 3 (𝜑 → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
802, 79mpbid 232 . 2 (𝜑 → (0 < 𝐴 ∨ 0 = 𝐴))
8172, 76, 80mpjaodan 961 1 (𝜑𝐴 ≤ (𝐴𝑐𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108   class class class wbr 5143  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492  +crp 13034  𝑐ccxp 26597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598  df-cxp 26599
This theorem is referenced by:  cxpaddle  26795
  Copyright terms: Public domain W3C validator