| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aks4d1p4 | Structured version Visualization version GIF version | ||
| Description: There exists a small enough number such that it does not divide 𝐴. (Contributed by metakunt, 28-Oct-2024.) |
| Ref | Expression |
|---|---|
| aks4d1p4.1 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) |
| aks4d1p4.2 | ⊢ 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁↑𝑘) − 1)) |
| aks4d1p4.3 | ⊢ 𝐵 = (⌈‘((2 logb 𝑁)↑5)) |
| aks4d1p4.4 | ⊢ 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}, ℝ, < ) |
| Ref | Expression |
|---|---|
| aks4d1p4 | ⊢ (𝜑 → (𝑅 ∈ (1...𝐵) ∧ ¬ 𝑅 ∥ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aks4d1p4.4 | . . . 4 ⊢ 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}, ℝ, < ) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}, ℝ, < )) |
| 3 | ltso 11196 | . . . . 5 ⊢ < Or ℝ | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → < Or ℝ) |
| 5 | fzfid 13880 | . . . . . 6 ⊢ (𝜑 → (1...𝐵) ∈ Fin) | |
| 6 | ssrab2 4031 | . . . . . . 7 ⊢ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ⊆ (1...𝐵) | |
| 7 | 6 | a1i 11 | . . . . . 6 ⊢ (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ⊆ (1...𝐵)) |
| 8 | 5, 7 | ssfid 9158 | . . . . 5 ⊢ (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ∈ Fin) |
| 9 | aks4d1p4.1 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) | |
| 10 | aks4d1p4.2 | . . . . . . 7 ⊢ 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁↑𝑘) − 1)) | |
| 11 | aks4d1p4.3 | . . . . . . 7 ⊢ 𝐵 = (⌈‘((2 logb 𝑁)↑5)) | |
| 12 | 9, 10, 11 | aks4d1p3 42061 | . . . . . 6 ⊢ (𝜑 → ∃𝑟 ∈ (1...𝐵) ¬ 𝑟 ∥ 𝐴) |
| 13 | rabn0 4340 | . . . . . 6 ⊢ ({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ≠ ∅ ↔ ∃𝑟 ∈ (1...𝐵) ¬ 𝑟 ∥ 𝐴) | |
| 14 | 12, 13 | sylibr 234 | . . . . 5 ⊢ (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ≠ ∅) |
| 15 | elfznn 13456 | . . . . . . . . . 10 ⊢ (𝑜 ∈ (1...𝐵) → 𝑜 ∈ ℕ) | |
| 16 | 15 | adantl 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑜 ∈ (1...𝐵)) → 𝑜 ∈ ℕ) |
| 17 | 16 | nnred 12143 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑜 ∈ (1...𝐵)) → 𝑜 ∈ ℝ) |
| 18 | 17 | ex 412 | . . . . . . 7 ⊢ (𝜑 → (𝑜 ∈ (1...𝐵) → 𝑜 ∈ ℝ)) |
| 19 | 18 | ssrdv 3941 | . . . . . 6 ⊢ (𝜑 → (1...𝐵) ⊆ ℝ) |
| 20 | 7, 19 | sstrd 3946 | . . . . 5 ⊢ (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ⊆ ℝ) |
| 21 | 8, 14, 20 | 3jca 1128 | . . . 4 ⊢ (𝜑 → ({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ∈ Fin ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ≠ ∅ ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ⊆ ℝ)) |
| 22 | fiinfcl 9393 | . . . 4 ⊢ (( < Or ℝ ∧ ({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ∈ Fin ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ≠ ∅ ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ⊆ ℝ)) → inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}, ℝ, < ) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}) | |
| 23 | 4, 21, 22 | syl2anc 584 | . . 3 ⊢ (𝜑 → inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}, ℝ, < ) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}) |
| 24 | 2, 23 | eqeltrd 2828 | . 2 ⊢ (𝜑 → 𝑅 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}) |
| 25 | breq1 5095 | . . . 4 ⊢ (𝑟 = 𝑅 → (𝑟 ∥ 𝐴 ↔ 𝑅 ∥ 𝐴)) | |
| 26 | 25 | notbid 318 | . . 3 ⊢ (𝑟 = 𝑅 → (¬ 𝑟 ∥ 𝐴 ↔ ¬ 𝑅 ∥ 𝐴)) |
| 27 | 26 | elrab 3648 | . 2 ⊢ (𝑅 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ↔ (𝑅 ∈ (1...𝐵) ∧ ¬ 𝑅 ∥ 𝐴)) |
| 28 | 24, 27 | sylib 218 | 1 ⊢ (𝜑 → (𝑅 ∈ (1...𝐵) ∧ ¬ 𝑅 ∥ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {crab 3394 ⊆ wss 3903 ∅c0 4284 class class class wbr 5092 Or wor 5526 ‘cfv 6482 (class class class)co 7349 Fincfn 8872 infcinf 9331 ℝcr 11008 1c1 11010 · cmul 11014 < clt 11149 − cmin 11347 ℕcn 12128 2c2 12183 3c3 12184 5c5 12186 ℤ≥cuz 12735 ...cfz 13410 ⌊cfl 13694 ⌈cceil 13695 ↑cexp 13968 ∏cprod 15810 ∥ cdvds 16163 logb clogb 26672 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cc 10329 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-symdif 4204 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-disj 5060 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-ofr 7614 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-omul 8393 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-dju 9797 df-card 9835 df-acn 9838 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-ioc 13253 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-ceil 13697 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-prod 15811 df-ef 15974 df-e 15975 df-sin 15976 df-cos 15977 df-pi 15979 df-dvds 16164 df-gcd 16406 df-lcm 16501 df-lcmf 16502 df-prm 16583 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-mulg 18947 df-cntz 19196 df-cmn 19661 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-fbas 21258 df-fg 21259 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-nei 22983 df-lp 23021 df-perf 23022 df-cn 23112 df-cnp 23113 df-haus 23200 df-cmp 23272 df-tx 23447 df-hmeo 23640 df-fil 23731 df-fm 23823 df-flim 23824 df-flf 23825 df-xms 24206 df-ms 24207 df-tms 24208 df-cncf 24769 df-ovol 25363 df-vol 25364 df-mbf 25518 df-itg1 25519 df-itg2 25520 df-ibl 25521 df-itg 25522 df-0p 25569 df-limc 25765 df-dv 25766 df-log 26463 df-cxp 26464 df-logb 26673 |
| This theorem is referenced by: aks4d1p5 42063 aks4d1p6 42064 aks4d1p7d1 42065 aks4d1p7 42066 aks4d1p8 42070 aks4d1p9 42071 aks4d1 42072 |
| Copyright terms: Public domain | W3C validator |