![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isumclim | Structured version Visualization version GIF version |
Description: An infinite sum equals the value its series converges to. (Contributed by NM, 25-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2014.) |
Ref | Expression |
---|---|
isumclim.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
isumclim.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
isumclim.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
isumclim.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
isumclim.6 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐵) |
Ref | Expression |
---|---|
isumclim | ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumclim.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | isumclim.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | isumclim.3 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
4 | isumclim.4 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) | |
5 | 1, 2, 3, 4 | isum 14791 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = ( ⇝ ‘seq𝑀( + , 𝐹))) |
6 | fclim 14625 | . . . 4 ⊢ ⇝ :dom ⇝ ⟶ℂ | |
7 | ffun 6259 | . . . 4 ⊢ ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ ) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ Fun ⇝ |
9 | isumclim.6 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐵) | |
10 | funbrfv 6458 | . . 3 ⊢ (Fun ⇝ → (seq𝑀( + , 𝐹) ⇝ 𝐵 → ( ⇝ ‘seq𝑀( + , 𝐹)) = 𝐵)) | |
11 | 8, 9, 10 | mpsyl 68 | . 2 ⊢ (𝜑 → ( ⇝ ‘seq𝑀( + , 𝐹)) = 𝐵) |
12 | 5, 11 | eqtrd 2833 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 class class class wbr 4843 dom cdm 5312 Fun wfun 6095 ⟶wf 6097 ‘cfv 6101 ℂcc 10222 + caddc 10227 ℤcz 11666 ℤ≥cuz 11930 seqcseq 13055 ⇝ cli 14556 Σcsu 14757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-inf2 8788 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-pre-sup 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-oadd 7803 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-sup 8590 df-oi 8657 df-card 9051 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-nn 11313 df-2 11376 df-3 11377 df-n0 11581 df-z 11667 df-uz 11931 df-rp 12075 df-fz 12581 df-fzo 12721 df-seq 13056 df-exp 13115 df-hash 13371 df-cj 14180 df-re 14181 df-im 14182 df-sqrt 14316 df-abs 14317 df-clim 14560 df-sum 14758 |
This theorem is referenced by: isummulc2 14832 isumadd 14837 isumsplit 14910 isumsup 14917 trirecip 14933 geolim2 14940 geoisum 14946 geoisumr 14947 geoisum1 14948 eftlub 15175 eflegeo 15187 rpnnen2lem9 15287 rpnnen2lem12 15290 aaliou3lem3 24440 pserulm 24517 abelthlem6 24531 abelthlem7 24533 abelthlem8 24534 abelthlem9 24535 logtaylsum 24748 leibpi 25021 leibpisum 25022 log2tlbnd 25024 lgamgulm2 25114 basellem9 25167 dchrvmaeq0 25545 dchrisum0re 25554 esumpcvgval 30656 knoppcnlem9 32999 geomcau 34042 stirlinglem12 41041 fourierdlem112 41174 sge0isummpt2 41388 |
Copyright terms: Public domain | W3C validator |