Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iprodclim | Structured version Visualization version GIF version |
Description: An infinite product equals the value its sequence converges to. (Contributed by Scott Fenton, 18-Dec-2017.) |
Ref | Expression |
---|---|
iprodclim.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
iprodclim.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
iprodclim.3 | ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) |
iprodclim.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
iprodclim.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
iprodclim.6 | ⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝐵) |
Ref | Expression |
---|---|
iprodclim | ⊢ (𝜑 → ∏𝑘 ∈ 𝑍 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iprodclim.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | iprodclim.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | iprodclim.3 | . . 3 ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) | |
4 | iprodclim.4 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
5 | iprodclim.5 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) | |
6 | 1, 2, 3, 4, 5 | iprod 15333 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝑍 𝐴 = ( ⇝ ‘seq𝑀( · , 𝐹))) |
7 | fclim 14951 | . . . 4 ⊢ ⇝ :dom ⇝ ⟶ℂ | |
8 | ffun 6502 | . . . 4 ⊢ ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ ) | |
9 | 7, 8 | ax-mp 5 | . . 3 ⊢ Fun ⇝ |
10 | iprodclim.6 | . . 3 ⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝐵) | |
11 | funbrfv 6705 | . . 3 ⊢ (Fun ⇝ → (seq𝑀( · , 𝐹) ⇝ 𝐵 → ( ⇝ ‘seq𝑀( · , 𝐹)) = 𝐵)) | |
12 | 9, 10, 11 | mpsyl 68 | . 2 ⊢ (𝜑 → ( ⇝ ‘seq𝑀( · , 𝐹)) = 𝐵) |
13 | 6, 12 | eqtrd 2794 | 1 ⊢ (𝜑 → ∏𝑘 ∈ 𝑍 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∃wex 1782 ∈ wcel 2112 ≠ wne 2952 ∃wrex 3072 class class class wbr 5033 dom cdm 5525 Fun wfun 6330 ⟶wf 6332 ‘cfv 6336 ℂcc 10566 0cc0 10568 · cmul 10573 ℤcz 12013 ℤ≥cuz 12275 seqcseq 13411 ⇝ cli 14882 ∏cprod 15300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-inf2 9130 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 ax-pre-sup 10646 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-se 5485 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-isom 6345 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-oadd 8117 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-sup 8932 df-oi 9000 df-card 9394 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-div 11329 df-nn 11668 df-2 11730 df-3 11731 df-n0 11928 df-z 12014 df-uz 12276 df-rp 12424 df-fz 12933 df-fzo 13076 df-seq 13412 df-exp 13473 df-hash 13734 df-cj 14499 df-re 14500 df-im 14501 df-sqrt 14635 df-abs 14636 df-clim 14886 df-prod 15301 |
This theorem is referenced by: iprodmul 15398 |
Copyright terms: Public domain | W3C validator |