Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iprodclim | Structured version Visualization version GIF version |
Description: An infinite product equals the value its sequence converges to. (Contributed by Scott Fenton, 18-Dec-2017.) |
Ref | Expression |
---|---|
iprodclim.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
iprodclim.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
iprodclim.3 | ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) |
iprodclim.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
iprodclim.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
iprodclim.6 | ⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝐵) |
Ref | Expression |
---|---|
iprodclim | ⊢ (𝜑 → ∏𝑘 ∈ 𝑍 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iprodclim.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | iprodclim.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | iprodclim.3 | . . 3 ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) | |
4 | iprodclim.4 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
5 | iprodclim.5 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) | |
6 | 1, 2, 3, 4, 5 | iprod 15717 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝑍 𝐴 = ( ⇝ ‘seq𝑀( · , 𝐹))) |
7 | fclim 15331 | . . . 4 ⊢ ⇝ :dom ⇝ ⟶ℂ | |
8 | ffun 6638 | . . . 4 ⊢ ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ ) | |
9 | 7, 8 | ax-mp 5 | . . 3 ⊢ Fun ⇝ |
10 | iprodclim.6 | . . 3 ⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝐵) | |
11 | funbrfv 6857 | . . 3 ⊢ (Fun ⇝ → (seq𝑀( · , 𝐹) ⇝ 𝐵 → ( ⇝ ‘seq𝑀( · , 𝐹)) = 𝐵)) | |
12 | 9, 10, 11 | mpsyl 68 | . 2 ⊢ (𝜑 → ( ⇝ ‘seq𝑀( · , 𝐹)) = 𝐵) |
13 | 6, 12 | eqtrd 2777 | 1 ⊢ (𝜑 → ∏𝑘 ∈ 𝑍 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ≠ wne 2941 ∃wrex 3071 class class class wbr 5085 dom cdm 5605 Fun wfun 6457 ⟶wf 6459 ‘cfv 6463 ℂcc 10939 0cc0 10941 · cmul 10946 ℤcz 12389 ℤ≥cuz 12652 seqcseq 13791 ⇝ cli 15262 ∏cprod 15684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-inf2 9467 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 ax-pre-sup 11019 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-int 4891 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-se 5561 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-isom 6472 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-1st 7874 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-1o 8342 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-fin 8783 df-sup 9269 df-oi 9337 df-card 9765 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-div 11703 df-nn 12044 df-2 12106 df-3 12107 df-n0 12304 df-z 12390 df-uz 12653 df-rp 12801 df-fz 13310 df-fzo 13453 df-seq 13792 df-exp 13853 df-hash 14115 df-cj 14879 df-re 14880 df-im 14881 df-sqrt 15015 df-abs 15016 df-clim 15266 df-prod 15685 |
This theorem is referenced by: iprodmul 15782 |
Copyright terms: Public domain | W3C validator |