![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iccdili | Structured version Visualization version GIF version |
Description: Membership in a dilated interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
iccdili.1 | ⊢ 𝐴 ∈ ℝ |
iccdili.2 | ⊢ 𝐵 ∈ ℝ |
iccdili.3 | ⊢ 𝑅 ∈ ℝ+ |
iccdili.4 | ⊢ (𝐴 · 𝑅) = 𝐶 |
iccdili.5 | ⊢ (𝐵 · 𝑅) = 𝐷 |
Ref | Expression |
---|---|
iccdili | ⊢ (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 · 𝑅) ∈ (𝐶[,]𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccdili.1 | . . . 4 ⊢ 𝐴 ∈ ℝ | |
2 | iccdili.2 | . . . 4 ⊢ 𝐵 ∈ ℝ | |
3 | iccssre 13453 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
4 | 1, 2, 3 | mp2an 690 | . . 3 ⊢ (𝐴[,]𝐵) ⊆ ℝ |
5 | 4 | sseli 3976 | . 2 ⊢ (𝑋 ∈ (𝐴[,]𝐵) → 𝑋 ∈ ℝ) |
6 | iccdili.3 | . . . 4 ⊢ 𝑅 ∈ ℝ+ | |
7 | iccdili.4 | . . . . . 6 ⊢ (𝐴 · 𝑅) = 𝐶 | |
8 | iccdili.5 | . . . . . 6 ⊢ (𝐵 · 𝑅) = 𝐷 | |
9 | 7, 8 | iccdil 13514 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 · 𝑅) ∈ (𝐶[,]𝐷))) |
10 | 1, 2, 9 | mpanl12 700 | . . . 4 ⊢ ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 · 𝑅) ∈ (𝐶[,]𝐷))) |
11 | 6, 10 | mpan2 689 | . . 3 ⊢ (𝑋 ∈ ℝ → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 · 𝑅) ∈ (𝐶[,]𝐷))) |
12 | 11 | biimpd 228 | . 2 ⊢ (𝑋 ∈ ℝ → (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 · 𝑅) ∈ (𝐶[,]𝐷))) |
13 | 5, 12 | mpcom 38 | 1 ⊢ (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 · 𝑅) ∈ (𝐶[,]𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ⊆ wss 3948 (class class class)co 7415 ℝcr 11147 · cmul 11153 ℝ+crp 13021 [,]cicc 13374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7737 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3366 df-rab 3421 df-v 3466 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4325 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4908 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-po 5586 df-so 5587 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6497 df-fun 6547 df-fn 6548 df-f 6549 df-f1 6550 df-fo 6551 df-f1o 6552 df-fv 6553 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-er 8725 df-en 8966 df-dom 8967 df-sdom 8968 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-rp 13022 df-icc 13378 |
This theorem is referenced by: pcoass 25038 cxpsqrtlem 26725 |
Copyright terms: Public domain | W3C validator |