![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iccdili | Structured version Visualization version GIF version |
Description: Membership in a dilated interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
iccdili.1 | ⊢ 𝐴 ∈ ℝ |
iccdili.2 | ⊢ 𝐵 ∈ ℝ |
iccdili.3 | ⊢ 𝑅 ∈ ℝ+ |
iccdili.4 | ⊢ (𝐴 · 𝑅) = 𝐶 |
iccdili.5 | ⊢ (𝐵 · 𝑅) = 𝐷 |
Ref | Expression |
---|---|
iccdili | ⊢ (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 · 𝑅) ∈ (𝐶[,]𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccdili.1 | . . . 4 ⊢ 𝐴 ∈ ℝ | |
2 | iccdili.2 | . . . 4 ⊢ 𝐵 ∈ ℝ | |
3 | iccssre 12657 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
4 | 1, 2, 3 | mp2an 688 | . . 3 ⊢ (𝐴[,]𝐵) ⊆ ℝ |
5 | 4 | sseli 3880 | . 2 ⊢ (𝑋 ∈ (𝐴[,]𝐵) → 𝑋 ∈ ℝ) |
6 | iccdili.3 | . . . 4 ⊢ 𝑅 ∈ ℝ+ | |
7 | iccdili.4 | . . . . . 6 ⊢ (𝐴 · 𝑅) = 𝐶 | |
8 | iccdili.5 | . . . . . 6 ⊢ (𝐵 · 𝑅) = 𝐷 | |
9 | 7, 8 | iccdil 12715 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 · 𝑅) ∈ (𝐶[,]𝐷))) |
10 | 1, 2, 9 | mpanl12 698 | . . . 4 ⊢ ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 · 𝑅) ∈ (𝐶[,]𝐷))) |
11 | 6, 10 | mpan2 687 | . . 3 ⊢ (𝑋 ∈ ℝ → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 · 𝑅) ∈ (𝐶[,]𝐷))) |
12 | 11 | biimpd 230 | . 2 ⊢ (𝑋 ∈ ℝ → (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 · 𝑅) ∈ (𝐶[,]𝐷))) |
13 | 5, 12 | mpcom 38 | 1 ⊢ (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 · 𝑅) ∈ (𝐶[,]𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1520 ∈ wcel 2079 ⊆ wss 3854 (class class class)co 7007 ℝcr 10371 · cmul 10377 ℝ+crp 12228 [,]cicc 12580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 ax-cnex 10428 ax-resscn 10429 ax-1cn 10430 ax-icn 10431 ax-addcl 10432 ax-addrcl 10433 ax-mulcl 10434 ax-mulrcl 10435 ax-mulcom 10436 ax-addass 10437 ax-mulass 10438 ax-distr 10439 ax-i2m1 10440 ax-1ne0 10441 ax-1rid 10442 ax-rnegex 10443 ax-rrecex 10444 ax-cnre 10445 ax-pre-lttri 10446 ax-pre-lttrn 10447 ax-pre-ltadd 10448 ax-pre-mulgt0 10449 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1079 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-nel 3089 df-ral 3108 df-rex 3109 df-reu 3110 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-op 4473 df-uni 4740 df-br 4957 df-opab 5019 df-mpt 5036 df-id 5340 df-po 5354 df-so 5355 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-riota 6968 df-ov 7010 df-oprab 7011 df-mpo 7012 df-er 8130 df-en 8348 df-dom 8349 df-sdom 8350 df-pnf 10512 df-mnf 10513 df-xr 10514 df-ltxr 10515 df-le 10516 df-sub 10708 df-neg 10709 df-rp 12229 df-icc 12584 |
This theorem is referenced by: pcoass 23299 cxpsqrtlem 24954 |
Copyright terms: Public domain | W3C validator |