![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > le2subd | Structured version Visualization version GIF version |
Description: Subtracting both sides of two 'less than or equal to' relations. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
lt2addd.4 | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
le2addd.5 | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
le2addd.6 | ⊢ (𝜑 → 𝐵 ≤ 𝐷) |
Ref | Expression |
---|---|
le2subd | ⊢ (𝜑 → (𝐴 − 𝐷) ≤ (𝐶 − 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | le2addd.5 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐶) | |
2 | le2addd.6 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐷) | |
3 | leidd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | lt2addd.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
5 | ltadd1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
6 | ltnegd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
7 | le2sub 10993 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 − 𝐷) ≤ (𝐶 − 𝐵))) | |
8 | 3, 4, 5, 6, 7 | syl22anc 835 | . 2 ⊢ (𝜑 → ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 − 𝐷) ≤ (𝐶 − 𝐵))) |
9 | 1, 2, 8 | mp2and 695 | 1 ⊢ (𝜑 → (𝐴 − 𝐷) ≤ (𝐶 − 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2083 class class class wbr 4968 (class class class)co 7023 ℝcr 10389 ≤ cle 10529 − cmin 10723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-op 4485 df-uni 4752 df-br 4969 df-opab 5031 df-mpt 5048 df-id 5355 df-po 5369 df-so 5370 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-er 8146 df-en 8365 df-dom 8366 df-sdom 8367 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 |
This theorem is referenced by: itgle 24097 harmonicbnd4 25274 logfaclbnd 25484 chpdifbndlem1 25815 pntrlog2bndlem6 25845 dnibndlem10 33437 knoppndvlem15 33476 iccsuble 41358 dvbdfbdioolem1 41776 etransclem23 42106 |
Copyright terms: Public domain | W3C validator |