| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem6 | Structured version Visualization version GIF version | ||
| Description: 𝑋 is in the periodic partition, when the considered interval is centered at 𝑋. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fourierdlem6.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| fourierdlem6.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| fourierdlem6.altb | ⊢ (𝜑 → 𝐴 < 𝐵) |
| fourierdlem6.t | ⊢ 𝑇 = (𝐵 − 𝐴) |
| fourierdlem6.5 | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
| fourierdlem6.i | ⊢ (𝜑 → 𝐼 ∈ ℤ) |
| fourierdlem6.j | ⊢ (𝜑 → 𝐽 ∈ ℤ) |
| fourierdlem6.iltj | ⊢ (𝜑 → 𝐼 < 𝐽) |
| fourierdlem6.iel | ⊢ (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵)) |
| fourierdlem6.jel | ⊢ (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵)) |
| Ref | Expression |
|---|---|
| fourierdlem6 | ⊢ (𝜑 → 𝐽 = (𝐼 + 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fourierdlem6.j | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ ℤ) | |
| 2 | 1 | zred 12572 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ ℝ) |
| 3 | fourierdlem6.i | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ ℤ) | |
| 4 | 3 | zred 12572 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ ℝ) |
| 5 | 2, 4 | resubcld 11540 | . . . . . 6 ⊢ (𝜑 → (𝐽 − 𝐼) ∈ ℝ) |
| 6 | fourierdlem6.t | . . . . . . 7 ⊢ 𝑇 = (𝐵 − 𝐴) | |
| 7 | fourierdlem6.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 8 | fourierdlem6.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 9 | 7, 8 | resubcld 11540 | . . . . . . 7 ⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) |
| 10 | 6, 9 | eqeltrid 2835 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ ℝ) |
| 11 | 5, 10 | remulcld 11137 | . . . . 5 ⊢ (𝜑 → ((𝐽 − 𝐼) · 𝑇) ∈ ℝ) |
| 12 | fourierdlem6.altb | . . . . . . . 8 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 13 | 8, 7 | posdifd 11699 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
| 14 | 12, 13 | mpbid 232 | . . . . . . 7 ⊢ (𝜑 → 0 < (𝐵 − 𝐴)) |
| 15 | 14, 6 | breqtrrdi 5128 | . . . . . 6 ⊢ (𝜑 → 0 < 𝑇) |
| 16 | 10, 15 | elrpd 12926 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ ℝ+) |
| 17 | fourierdlem6.jel | . . . . . . 7 ⊢ (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵)) | |
| 18 | fourierdlem6.iel | . . . . . . 7 ⊢ (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵)) | |
| 19 | 8, 7, 17, 18 | iccsuble 45559 | . . . . . 6 ⊢ (𝜑 → ((𝑋 + (𝐽 · 𝑇)) − (𝑋 + (𝐼 · 𝑇))) ≤ (𝐵 − 𝐴)) |
| 20 | 2 | recnd 11135 | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ ℂ) |
| 21 | 4 | recnd 11135 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ ℂ) |
| 22 | 10 | recnd 11135 | . . . . . . . 8 ⊢ (𝜑 → 𝑇 ∈ ℂ) |
| 23 | 20, 21, 22 | subdird 11569 | . . . . . . 7 ⊢ (𝜑 → ((𝐽 − 𝐼) · 𝑇) = ((𝐽 · 𝑇) − (𝐼 · 𝑇))) |
| 24 | fourierdlem6.5 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
| 25 | 24 | recnd 11135 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 26 | 2, 10 | remulcld 11137 | . . . . . . . . 9 ⊢ (𝜑 → (𝐽 · 𝑇) ∈ ℝ) |
| 27 | 26 | recnd 11135 | . . . . . . . 8 ⊢ (𝜑 → (𝐽 · 𝑇) ∈ ℂ) |
| 28 | 4, 10 | remulcld 11137 | . . . . . . . . 9 ⊢ (𝜑 → (𝐼 · 𝑇) ∈ ℝ) |
| 29 | 28 | recnd 11135 | . . . . . . . 8 ⊢ (𝜑 → (𝐼 · 𝑇) ∈ ℂ) |
| 30 | 25, 27, 29 | pnpcand 11504 | . . . . . . 7 ⊢ (𝜑 → ((𝑋 + (𝐽 · 𝑇)) − (𝑋 + (𝐼 · 𝑇))) = ((𝐽 · 𝑇) − (𝐼 · 𝑇))) |
| 31 | 23, 30 | eqtr4d 2769 | . . . . . 6 ⊢ (𝜑 → ((𝐽 − 𝐼) · 𝑇) = ((𝑋 + (𝐽 · 𝑇)) − (𝑋 + (𝐼 · 𝑇)))) |
| 32 | 6 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑇 = (𝐵 − 𝐴)) |
| 33 | 19, 31, 32 | 3brtr4d 5118 | . . . . 5 ⊢ (𝜑 → ((𝐽 − 𝐼) · 𝑇) ≤ 𝑇) |
| 34 | 11, 10, 16, 33 | lediv1dd 12987 | . . . 4 ⊢ (𝜑 → (((𝐽 − 𝐼) · 𝑇) / 𝑇) ≤ (𝑇 / 𝑇)) |
| 35 | 5 | recnd 11135 | . . . . 5 ⊢ (𝜑 → (𝐽 − 𝐼) ∈ ℂ) |
| 36 | 15 | gt0ne0d 11676 | . . . . 5 ⊢ (𝜑 → 𝑇 ≠ 0) |
| 37 | 35, 22, 36 | divcan4d 11898 | . . . 4 ⊢ (𝜑 → (((𝐽 − 𝐼) · 𝑇) / 𝑇) = (𝐽 − 𝐼)) |
| 38 | 22, 36 | dividd 11890 | . . . 4 ⊢ (𝜑 → (𝑇 / 𝑇) = 1) |
| 39 | 34, 37, 38 | 3brtr3d 5117 | . . 3 ⊢ (𝜑 → (𝐽 − 𝐼) ≤ 1) |
| 40 | 1red 11108 | . . . 4 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 41 | 2, 4, 40 | lesubadd2d 11711 | . . 3 ⊢ (𝜑 → ((𝐽 − 𝐼) ≤ 1 ↔ 𝐽 ≤ (𝐼 + 1))) |
| 42 | 39, 41 | mpbid 232 | . 2 ⊢ (𝜑 → 𝐽 ≤ (𝐼 + 1)) |
| 43 | fourierdlem6.iltj | . . 3 ⊢ (𝜑 → 𝐼 < 𝐽) | |
| 44 | zltp1le 12517 | . . . 4 ⊢ ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽)) | |
| 45 | 3, 1, 44 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽)) |
| 46 | 43, 45 | mpbid 232 | . 2 ⊢ (𝜑 → (𝐼 + 1) ≤ 𝐽) |
| 47 | 4, 40 | readdcld 11136 | . . 3 ⊢ (𝜑 → (𝐼 + 1) ∈ ℝ) |
| 48 | 2, 47 | letri3d 11250 | . 2 ⊢ (𝜑 → (𝐽 = (𝐼 + 1) ↔ (𝐽 ≤ (𝐼 + 1) ∧ (𝐼 + 1) ≤ 𝐽))) |
| 49 | 42, 46, 48 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐽 = (𝐼 + 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 class class class wbr 5086 (class class class)co 7341 ℝcr 11000 0cc0 11001 1c1 11002 + caddc 11004 · cmul 11006 < clt 11141 ≤ cle 11142 − cmin 11339 / cdiv 11769 ℤcz 12463 [,]cicc 13243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-n0 12377 df-z 12464 df-rp 12886 df-icc 13247 |
| This theorem is referenced by: fourierdlem35 46180 fourierdlem51 46195 |
| Copyright terms: Public domain | W3C validator |