![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem6 | Structured version Visualization version GIF version |
Description: 𝑋 is in the periodic partition, when the considered interval is centered at 𝑋. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fourierdlem6.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
fourierdlem6.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
fourierdlem6.altb | ⊢ (𝜑 → 𝐴 < 𝐵) |
fourierdlem6.t | ⊢ 𝑇 = (𝐵 − 𝐴) |
fourierdlem6.5 | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
fourierdlem6.i | ⊢ (𝜑 → 𝐼 ∈ ℤ) |
fourierdlem6.j | ⊢ (𝜑 → 𝐽 ∈ ℤ) |
fourierdlem6.iltj | ⊢ (𝜑 → 𝐼 < 𝐽) |
fourierdlem6.iel | ⊢ (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵)) |
fourierdlem6.jel | ⊢ (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵)) |
Ref | Expression |
---|---|
fourierdlem6 | ⊢ (𝜑 → 𝐽 = (𝐼 + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fourierdlem6.j | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ ℤ) | |
2 | 1 | zred 12747 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ ℝ) |
3 | fourierdlem6.i | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ ℤ) | |
4 | 3 | zred 12747 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ ℝ) |
5 | 2, 4 | resubcld 11718 | . . . . . 6 ⊢ (𝜑 → (𝐽 − 𝐼) ∈ ℝ) |
6 | fourierdlem6.t | . . . . . . 7 ⊢ 𝑇 = (𝐵 − 𝐴) | |
7 | fourierdlem6.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
8 | fourierdlem6.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
9 | 7, 8 | resubcld 11718 | . . . . . . 7 ⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) |
10 | 6, 9 | eqeltrid 2848 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ ℝ) |
11 | 5, 10 | remulcld 11320 | . . . . 5 ⊢ (𝜑 → ((𝐽 − 𝐼) · 𝑇) ∈ ℝ) |
12 | fourierdlem6.altb | . . . . . . . 8 ⊢ (𝜑 → 𝐴 < 𝐵) | |
13 | 8, 7 | posdifd 11877 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
14 | 12, 13 | mpbid 232 | . . . . . . 7 ⊢ (𝜑 → 0 < (𝐵 − 𝐴)) |
15 | 14, 6 | breqtrrdi 5208 | . . . . . 6 ⊢ (𝜑 → 0 < 𝑇) |
16 | 10, 15 | elrpd 13096 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ ℝ+) |
17 | fourierdlem6.jel | . . . . . . 7 ⊢ (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵)) | |
18 | fourierdlem6.iel | . . . . . . 7 ⊢ (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵)) | |
19 | 8, 7, 17, 18 | iccsuble 45437 | . . . . . 6 ⊢ (𝜑 → ((𝑋 + (𝐽 · 𝑇)) − (𝑋 + (𝐼 · 𝑇))) ≤ (𝐵 − 𝐴)) |
20 | 2 | recnd 11318 | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ ℂ) |
21 | 4 | recnd 11318 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ ℂ) |
22 | 10 | recnd 11318 | . . . . . . . 8 ⊢ (𝜑 → 𝑇 ∈ ℂ) |
23 | 20, 21, 22 | subdird 11747 | . . . . . . 7 ⊢ (𝜑 → ((𝐽 − 𝐼) · 𝑇) = ((𝐽 · 𝑇) − (𝐼 · 𝑇))) |
24 | fourierdlem6.5 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
25 | 24 | recnd 11318 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
26 | 2, 10 | remulcld 11320 | . . . . . . . . 9 ⊢ (𝜑 → (𝐽 · 𝑇) ∈ ℝ) |
27 | 26 | recnd 11318 | . . . . . . . 8 ⊢ (𝜑 → (𝐽 · 𝑇) ∈ ℂ) |
28 | 4, 10 | remulcld 11320 | . . . . . . . . 9 ⊢ (𝜑 → (𝐼 · 𝑇) ∈ ℝ) |
29 | 28 | recnd 11318 | . . . . . . . 8 ⊢ (𝜑 → (𝐼 · 𝑇) ∈ ℂ) |
30 | 25, 27, 29 | pnpcand 11684 | . . . . . . 7 ⊢ (𝜑 → ((𝑋 + (𝐽 · 𝑇)) − (𝑋 + (𝐼 · 𝑇))) = ((𝐽 · 𝑇) − (𝐼 · 𝑇))) |
31 | 23, 30 | eqtr4d 2783 | . . . . . 6 ⊢ (𝜑 → ((𝐽 − 𝐼) · 𝑇) = ((𝑋 + (𝐽 · 𝑇)) − (𝑋 + (𝐼 · 𝑇)))) |
32 | 6 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑇 = (𝐵 − 𝐴)) |
33 | 19, 31, 32 | 3brtr4d 5198 | . . . . 5 ⊢ (𝜑 → ((𝐽 − 𝐼) · 𝑇) ≤ 𝑇) |
34 | 11, 10, 16, 33 | lediv1dd 13157 | . . . 4 ⊢ (𝜑 → (((𝐽 − 𝐼) · 𝑇) / 𝑇) ≤ (𝑇 / 𝑇)) |
35 | 5 | recnd 11318 | . . . . 5 ⊢ (𝜑 → (𝐽 − 𝐼) ∈ ℂ) |
36 | 15 | gt0ne0d 11854 | . . . . 5 ⊢ (𝜑 → 𝑇 ≠ 0) |
37 | 35, 22, 36 | divcan4d 12076 | . . . 4 ⊢ (𝜑 → (((𝐽 − 𝐼) · 𝑇) / 𝑇) = (𝐽 − 𝐼)) |
38 | 22, 36 | dividd 12068 | . . . 4 ⊢ (𝜑 → (𝑇 / 𝑇) = 1) |
39 | 34, 37, 38 | 3brtr3d 5197 | . . 3 ⊢ (𝜑 → (𝐽 − 𝐼) ≤ 1) |
40 | 1red 11291 | . . . 4 ⊢ (𝜑 → 1 ∈ ℝ) | |
41 | 2, 4, 40 | lesubadd2d 11889 | . . 3 ⊢ (𝜑 → ((𝐽 − 𝐼) ≤ 1 ↔ 𝐽 ≤ (𝐼 + 1))) |
42 | 39, 41 | mpbid 232 | . 2 ⊢ (𝜑 → 𝐽 ≤ (𝐼 + 1)) |
43 | fourierdlem6.iltj | . . 3 ⊢ (𝜑 → 𝐼 < 𝐽) | |
44 | zltp1le 12693 | . . . 4 ⊢ ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽)) | |
45 | 3, 1, 44 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽)) |
46 | 43, 45 | mpbid 232 | . 2 ⊢ (𝜑 → (𝐼 + 1) ≤ 𝐽) |
47 | 4, 40 | readdcld 11319 | . . 3 ⊢ (𝜑 → (𝐼 + 1) ∈ ℝ) |
48 | 2, 47 | letri3d 11432 | . 2 ⊢ (𝜑 → (𝐽 = (𝐼 + 1) ↔ (𝐽 ≤ (𝐼 + 1) ∧ (𝐼 + 1) ≤ 𝐽))) |
49 | 42, 46, 48 | mpbir2and 712 | 1 ⊢ (𝜑 → 𝐽 = (𝐼 + 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 (class class class)co 7448 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 < clt 11324 ≤ cle 11325 − cmin 11520 / cdiv 11947 ℤcz 12639 [,]cicc 13410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-n0 12554 df-z 12640 df-rp 13058 df-icc 13414 |
This theorem is referenced by: fourierdlem35 46063 fourierdlem51 46078 |
Copyright terms: Public domain | W3C validator |