Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem6 | Structured version Visualization version GIF version |
Description: 𝑋 is in the periodic partition, when the considered interval is centered at 𝑋. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fourierdlem6.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
fourierdlem6.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
fourierdlem6.altb | ⊢ (𝜑 → 𝐴 < 𝐵) |
fourierdlem6.t | ⊢ 𝑇 = (𝐵 − 𝐴) |
fourierdlem6.5 | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
fourierdlem6.i | ⊢ (𝜑 → 𝐼 ∈ ℤ) |
fourierdlem6.j | ⊢ (𝜑 → 𝐽 ∈ ℤ) |
fourierdlem6.iltj | ⊢ (𝜑 → 𝐼 < 𝐽) |
fourierdlem6.iel | ⊢ (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵)) |
fourierdlem6.jel | ⊢ (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵)) |
Ref | Expression |
---|---|
fourierdlem6 | ⊢ (𝜑 → 𝐽 = (𝐼 + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fourierdlem6.j | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ ℤ) | |
2 | 1 | zred 12355 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ ℝ) |
3 | fourierdlem6.i | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ ℤ) | |
4 | 3 | zred 12355 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ ℝ) |
5 | 2, 4 | resubcld 11333 | . . . . . 6 ⊢ (𝜑 → (𝐽 − 𝐼) ∈ ℝ) |
6 | fourierdlem6.t | . . . . . . 7 ⊢ 𝑇 = (𝐵 − 𝐴) | |
7 | fourierdlem6.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
8 | fourierdlem6.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
9 | 7, 8 | resubcld 11333 | . . . . . . 7 ⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) |
10 | 6, 9 | eqeltrid 2843 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ ℝ) |
11 | 5, 10 | remulcld 10936 | . . . . 5 ⊢ (𝜑 → ((𝐽 − 𝐼) · 𝑇) ∈ ℝ) |
12 | fourierdlem6.altb | . . . . . . . 8 ⊢ (𝜑 → 𝐴 < 𝐵) | |
13 | 8, 7 | posdifd 11492 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
14 | 12, 13 | mpbid 231 | . . . . . . 7 ⊢ (𝜑 → 0 < (𝐵 − 𝐴)) |
15 | 14, 6 | breqtrrdi 5112 | . . . . . 6 ⊢ (𝜑 → 0 < 𝑇) |
16 | 10, 15 | elrpd 12698 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ ℝ+) |
17 | fourierdlem6.jel | . . . . . . 7 ⊢ (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵)) | |
18 | fourierdlem6.iel | . . . . . . 7 ⊢ (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵)) | |
19 | 8, 7, 17, 18 | iccsuble 42947 | . . . . . 6 ⊢ (𝜑 → ((𝑋 + (𝐽 · 𝑇)) − (𝑋 + (𝐼 · 𝑇))) ≤ (𝐵 − 𝐴)) |
20 | 2 | recnd 10934 | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ ℂ) |
21 | 4 | recnd 10934 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ ℂ) |
22 | 10 | recnd 10934 | . . . . . . . 8 ⊢ (𝜑 → 𝑇 ∈ ℂ) |
23 | 20, 21, 22 | subdird 11362 | . . . . . . 7 ⊢ (𝜑 → ((𝐽 − 𝐼) · 𝑇) = ((𝐽 · 𝑇) − (𝐼 · 𝑇))) |
24 | fourierdlem6.5 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
25 | 24 | recnd 10934 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
26 | 2, 10 | remulcld 10936 | . . . . . . . . 9 ⊢ (𝜑 → (𝐽 · 𝑇) ∈ ℝ) |
27 | 26 | recnd 10934 | . . . . . . . 8 ⊢ (𝜑 → (𝐽 · 𝑇) ∈ ℂ) |
28 | 4, 10 | remulcld 10936 | . . . . . . . . 9 ⊢ (𝜑 → (𝐼 · 𝑇) ∈ ℝ) |
29 | 28 | recnd 10934 | . . . . . . . 8 ⊢ (𝜑 → (𝐼 · 𝑇) ∈ ℂ) |
30 | 25, 27, 29 | pnpcand 11299 | . . . . . . 7 ⊢ (𝜑 → ((𝑋 + (𝐽 · 𝑇)) − (𝑋 + (𝐼 · 𝑇))) = ((𝐽 · 𝑇) − (𝐼 · 𝑇))) |
31 | 23, 30 | eqtr4d 2781 | . . . . . 6 ⊢ (𝜑 → ((𝐽 − 𝐼) · 𝑇) = ((𝑋 + (𝐽 · 𝑇)) − (𝑋 + (𝐼 · 𝑇)))) |
32 | 6 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑇 = (𝐵 − 𝐴)) |
33 | 19, 31, 32 | 3brtr4d 5102 | . . . . 5 ⊢ (𝜑 → ((𝐽 − 𝐼) · 𝑇) ≤ 𝑇) |
34 | 11, 10, 16, 33 | lediv1dd 12759 | . . . 4 ⊢ (𝜑 → (((𝐽 − 𝐼) · 𝑇) / 𝑇) ≤ (𝑇 / 𝑇)) |
35 | 5 | recnd 10934 | . . . . 5 ⊢ (𝜑 → (𝐽 − 𝐼) ∈ ℂ) |
36 | 15 | gt0ne0d 11469 | . . . . 5 ⊢ (𝜑 → 𝑇 ≠ 0) |
37 | 35, 22, 36 | divcan4d 11687 | . . . 4 ⊢ (𝜑 → (((𝐽 − 𝐼) · 𝑇) / 𝑇) = (𝐽 − 𝐼)) |
38 | 22, 36 | dividd 11679 | . . . 4 ⊢ (𝜑 → (𝑇 / 𝑇) = 1) |
39 | 34, 37, 38 | 3brtr3d 5101 | . . 3 ⊢ (𝜑 → (𝐽 − 𝐼) ≤ 1) |
40 | 1red 10907 | . . . 4 ⊢ (𝜑 → 1 ∈ ℝ) | |
41 | 2, 4, 40 | lesubadd2d 11504 | . . 3 ⊢ (𝜑 → ((𝐽 − 𝐼) ≤ 1 ↔ 𝐽 ≤ (𝐼 + 1))) |
42 | 39, 41 | mpbid 231 | . 2 ⊢ (𝜑 → 𝐽 ≤ (𝐼 + 1)) |
43 | fourierdlem6.iltj | . . 3 ⊢ (𝜑 → 𝐼 < 𝐽) | |
44 | zltp1le 12300 | . . . 4 ⊢ ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽)) | |
45 | 3, 1, 44 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽)) |
46 | 43, 45 | mpbid 231 | . 2 ⊢ (𝜑 → (𝐼 + 1) ≤ 𝐽) |
47 | 4, 40 | readdcld 10935 | . . 3 ⊢ (𝜑 → (𝐼 + 1) ∈ ℝ) |
48 | 2, 47 | letri3d 11047 | . 2 ⊢ (𝜑 → (𝐽 = (𝐼 + 1) ↔ (𝐽 ≤ (𝐼 + 1) ∧ (𝐼 + 1) ≤ 𝐽))) |
49 | 42, 46, 48 | mpbir2and 709 | 1 ⊢ (𝜑 → 𝐽 = (𝐼 + 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 < clt 10940 ≤ cle 10941 − cmin 11135 / cdiv 11562 ℤcz 12249 [,]cicc 13011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-n0 12164 df-z 12250 df-rp 12660 df-icc 13015 |
This theorem is referenced by: fourierdlem35 43573 fourierdlem51 43588 |
Copyright terms: Public domain | W3C validator |