| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem6 | Structured version Visualization version GIF version | ||
| Description: 𝑋 is in the periodic partition, when the considered interval is centered at 𝑋. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fourierdlem6.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| fourierdlem6.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| fourierdlem6.altb | ⊢ (𝜑 → 𝐴 < 𝐵) |
| fourierdlem6.t | ⊢ 𝑇 = (𝐵 − 𝐴) |
| fourierdlem6.5 | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
| fourierdlem6.i | ⊢ (𝜑 → 𝐼 ∈ ℤ) |
| fourierdlem6.j | ⊢ (𝜑 → 𝐽 ∈ ℤ) |
| fourierdlem6.iltj | ⊢ (𝜑 → 𝐼 < 𝐽) |
| fourierdlem6.iel | ⊢ (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵)) |
| fourierdlem6.jel | ⊢ (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵)) |
| Ref | Expression |
|---|---|
| fourierdlem6 | ⊢ (𝜑 → 𝐽 = (𝐼 + 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fourierdlem6.j | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ ℤ) | |
| 2 | 1 | zred 12702 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ ℝ) |
| 3 | fourierdlem6.i | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ ℤ) | |
| 4 | 3 | zred 12702 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ ℝ) |
| 5 | 2, 4 | resubcld 11670 | . . . . . 6 ⊢ (𝜑 → (𝐽 − 𝐼) ∈ ℝ) |
| 6 | fourierdlem6.t | . . . . . . 7 ⊢ 𝑇 = (𝐵 − 𝐴) | |
| 7 | fourierdlem6.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 8 | fourierdlem6.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 9 | 7, 8 | resubcld 11670 | . . . . . . 7 ⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) |
| 10 | 6, 9 | eqeltrid 2839 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ ℝ) |
| 11 | 5, 10 | remulcld 11270 | . . . . 5 ⊢ (𝜑 → ((𝐽 − 𝐼) · 𝑇) ∈ ℝ) |
| 12 | fourierdlem6.altb | . . . . . . . 8 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 13 | 8, 7 | posdifd 11829 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
| 14 | 12, 13 | mpbid 232 | . . . . . . 7 ⊢ (𝜑 → 0 < (𝐵 − 𝐴)) |
| 15 | 14, 6 | breqtrrdi 5166 | . . . . . 6 ⊢ (𝜑 → 0 < 𝑇) |
| 16 | 10, 15 | elrpd 13053 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ ℝ+) |
| 17 | fourierdlem6.jel | . . . . . . 7 ⊢ (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵)) | |
| 18 | fourierdlem6.iel | . . . . . . 7 ⊢ (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵)) | |
| 19 | 8, 7, 17, 18 | iccsuble 45515 | . . . . . 6 ⊢ (𝜑 → ((𝑋 + (𝐽 · 𝑇)) − (𝑋 + (𝐼 · 𝑇))) ≤ (𝐵 − 𝐴)) |
| 20 | 2 | recnd 11268 | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ ℂ) |
| 21 | 4 | recnd 11268 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ ℂ) |
| 22 | 10 | recnd 11268 | . . . . . . . 8 ⊢ (𝜑 → 𝑇 ∈ ℂ) |
| 23 | 20, 21, 22 | subdird 11699 | . . . . . . 7 ⊢ (𝜑 → ((𝐽 − 𝐼) · 𝑇) = ((𝐽 · 𝑇) − (𝐼 · 𝑇))) |
| 24 | fourierdlem6.5 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
| 25 | 24 | recnd 11268 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 26 | 2, 10 | remulcld 11270 | . . . . . . . . 9 ⊢ (𝜑 → (𝐽 · 𝑇) ∈ ℝ) |
| 27 | 26 | recnd 11268 | . . . . . . . 8 ⊢ (𝜑 → (𝐽 · 𝑇) ∈ ℂ) |
| 28 | 4, 10 | remulcld 11270 | . . . . . . . . 9 ⊢ (𝜑 → (𝐼 · 𝑇) ∈ ℝ) |
| 29 | 28 | recnd 11268 | . . . . . . . 8 ⊢ (𝜑 → (𝐼 · 𝑇) ∈ ℂ) |
| 30 | 25, 27, 29 | pnpcand 11636 | . . . . . . 7 ⊢ (𝜑 → ((𝑋 + (𝐽 · 𝑇)) − (𝑋 + (𝐼 · 𝑇))) = ((𝐽 · 𝑇) − (𝐼 · 𝑇))) |
| 31 | 23, 30 | eqtr4d 2774 | . . . . . 6 ⊢ (𝜑 → ((𝐽 − 𝐼) · 𝑇) = ((𝑋 + (𝐽 · 𝑇)) − (𝑋 + (𝐼 · 𝑇)))) |
| 32 | 6 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑇 = (𝐵 − 𝐴)) |
| 33 | 19, 31, 32 | 3brtr4d 5156 | . . . . 5 ⊢ (𝜑 → ((𝐽 − 𝐼) · 𝑇) ≤ 𝑇) |
| 34 | 11, 10, 16, 33 | lediv1dd 13114 | . . . 4 ⊢ (𝜑 → (((𝐽 − 𝐼) · 𝑇) / 𝑇) ≤ (𝑇 / 𝑇)) |
| 35 | 5 | recnd 11268 | . . . . 5 ⊢ (𝜑 → (𝐽 − 𝐼) ∈ ℂ) |
| 36 | 15 | gt0ne0d 11806 | . . . . 5 ⊢ (𝜑 → 𝑇 ≠ 0) |
| 37 | 35, 22, 36 | divcan4d 12028 | . . . 4 ⊢ (𝜑 → (((𝐽 − 𝐼) · 𝑇) / 𝑇) = (𝐽 − 𝐼)) |
| 38 | 22, 36 | dividd 12020 | . . . 4 ⊢ (𝜑 → (𝑇 / 𝑇) = 1) |
| 39 | 34, 37, 38 | 3brtr3d 5155 | . . 3 ⊢ (𝜑 → (𝐽 − 𝐼) ≤ 1) |
| 40 | 1red 11241 | . . . 4 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 41 | 2, 4, 40 | lesubadd2d 11841 | . . 3 ⊢ (𝜑 → ((𝐽 − 𝐼) ≤ 1 ↔ 𝐽 ≤ (𝐼 + 1))) |
| 42 | 39, 41 | mpbid 232 | . 2 ⊢ (𝜑 → 𝐽 ≤ (𝐼 + 1)) |
| 43 | fourierdlem6.iltj | . . 3 ⊢ (𝜑 → 𝐼 < 𝐽) | |
| 44 | zltp1le 12647 | . . . 4 ⊢ ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽)) | |
| 45 | 3, 1, 44 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽)) |
| 46 | 43, 45 | mpbid 232 | . 2 ⊢ (𝜑 → (𝐼 + 1) ≤ 𝐽) |
| 47 | 4, 40 | readdcld 11269 | . . 3 ⊢ (𝜑 → (𝐼 + 1) ∈ ℝ) |
| 48 | 2, 47 | letri3d 11382 | . 2 ⊢ (𝜑 → (𝐽 = (𝐼 + 1) ↔ (𝐽 ≤ (𝐼 + 1) ∧ (𝐼 + 1) ≤ 𝐽))) |
| 49 | 42, 46, 48 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐽 = (𝐼 + 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 (class class class)co 7410 ℝcr 11133 0cc0 11134 1c1 11135 + caddc 11137 · cmul 11139 < clt 11274 ≤ cle 11275 − cmin 11471 / cdiv 11899 ℤcz 12593 [,]cicc 13370 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-n0 12507 df-z 12594 df-rp 13014 df-icc 13374 |
| This theorem is referenced by: fourierdlem35 46138 fourierdlem51 46153 |
| Copyright terms: Public domain | W3C validator |