Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem6 Structured version   Visualization version   GIF version

Theorem fourierdlem6 42392
Description: 𝑋 is in the periodic partition, when the considered interval is centered at 𝑋. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem6.a (𝜑𝐴 ∈ ℝ)
fourierdlem6.b (𝜑𝐵 ∈ ℝ)
fourierdlem6.altb (𝜑𝐴 < 𝐵)
fourierdlem6.t 𝑇 = (𝐵𝐴)
fourierdlem6.5 (𝜑𝑋 ∈ ℝ)
fourierdlem6.i (𝜑𝐼 ∈ ℤ)
fourierdlem6.j (𝜑𝐽 ∈ ℤ)
fourierdlem6.iltj (𝜑𝐼 < 𝐽)
fourierdlem6.iel (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵))
fourierdlem6.jel (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵))
Assertion
Ref Expression
fourierdlem6 (𝜑𝐽 = (𝐼 + 1))

Proof of Theorem fourierdlem6
StepHypRef Expression
1 fourierdlem6.j . . . . . . . 8 (𝜑𝐽 ∈ ℤ)
21zred 12081 . . . . . . 7 (𝜑𝐽 ∈ ℝ)
3 fourierdlem6.i . . . . . . . 8 (𝜑𝐼 ∈ ℤ)
43zred 12081 . . . . . . 7 (𝜑𝐼 ∈ ℝ)
52, 4resubcld 11062 . . . . . 6 (𝜑 → (𝐽𝐼) ∈ ℝ)
6 fourierdlem6.t . . . . . . 7 𝑇 = (𝐵𝐴)
7 fourierdlem6.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
8 fourierdlem6.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
97, 8resubcld 11062 . . . . . . 7 (𝜑 → (𝐵𝐴) ∈ ℝ)
106, 9eqeltrid 2917 . . . . . 6 (𝜑𝑇 ∈ ℝ)
115, 10remulcld 10665 . . . . 5 (𝜑 → ((𝐽𝐼) · 𝑇) ∈ ℝ)
12 fourierdlem6.altb . . . . . . . 8 (𝜑𝐴 < 𝐵)
138, 7posdifd 11221 . . . . . . . 8 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
1412, 13mpbid 234 . . . . . . 7 (𝜑 → 0 < (𝐵𝐴))
1514, 6breqtrrdi 5100 . . . . . 6 (𝜑 → 0 < 𝑇)
1610, 15elrpd 12422 . . . . 5 (𝜑𝑇 ∈ ℝ+)
17 fourierdlem6.jel . . . . . . 7 (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵))
18 fourierdlem6.iel . . . . . . 7 (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵))
198, 7, 17, 18iccsuble 41788 . . . . . 6 (𝜑 → ((𝑋 + (𝐽 · 𝑇)) − (𝑋 + (𝐼 · 𝑇))) ≤ (𝐵𝐴))
202recnd 10663 . . . . . . . 8 (𝜑𝐽 ∈ ℂ)
214recnd 10663 . . . . . . . 8 (𝜑𝐼 ∈ ℂ)
2210recnd 10663 . . . . . . . 8 (𝜑𝑇 ∈ ℂ)
2320, 21, 22subdird 11091 . . . . . . 7 (𝜑 → ((𝐽𝐼) · 𝑇) = ((𝐽 · 𝑇) − (𝐼 · 𝑇)))
24 fourierdlem6.5 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
2524recnd 10663 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
262, 10remulcld 10665 . . . . . . . . 9 (𝜑 → (𝐽 · 𝑇) ∈ ℝ)
2726recnd 10663 . . . . . . . 8 (𝜑 → (𝐽 · 𝑇) ∈ ℂ)
284, 10remulcld 10665 . . . . . . . . 9 (𝜑 → (𝐼 · 𝑇) ∈ ℝ)
2928recnd 10663 . . . . . . . 8 (𝜑 → (𝐼 · 𝑇) ∈ ℂ)
3025, 27, 29pnpcand 11028 . . . . . . 7 (𝜑 → ((𝑋 + (𝐽 · 𝑇)) − (𝑋 + (𝐼 · 𝑇))) = ((𝐽 · 𝑇) − (𝐼 · 𝑇)))
3123, 30eqtr4d 2859 . . . . . 6 (𝜑 → ((𝐽𝐼) · 𝑇) = ((𝑋 + (𝐽 · 𝑇)) − (𝑋 + (𝐼 · 𝑇))))
326a1i 11 . . . . . 6 (𝜑𝑇 = (𝐵𝐴))
3319, 31, 323brtr4d 5090 . . . . 5 (𝜑 → ((𝐽𝐼) · 𝑇) ≤ 𝑇)
3411, 10, 16, 33lediv1dd 12483 . . . 4 (𝜑 → (((𝐽𝐼) · 𝑇) / 𝑇) ≤ (𝑇 / 𝑇))
355recnd 10663 . . . . 5 (𝜑 → (𝐽𝐼) ∈ ℂ)
3615gt0ne0d 11198 . . . . 5 (𝜑𝑇 ≠ 0)
3735, 22, 36divcan4d 11416 . . . 4 (𝜑 → (((𝐽𝐼) · 𝑇) / 𝑇) = (𝐽𝐼))
3822, 36dividd 11408 . . . 4 (𝜑 → (𝑇 / 𝑇) = 1)
3934, 37, 383brtr3d 5089 . . 3 (𝜑 → (𝐽𝐼) ≤ 1)
40 1red 10636 . . . 4 (𝜑 → 1 ∈ ℝ)
412, 4, 40lesubadd2d 11233 . . 3 (𝜑 → ((𝐽𝐼) ≤ 1 ↔ 𝐽 ≤ (𝐼 + 1)))
4239, 41mpbid 234 . 2 (𝜑𝐽 ≤ (𝐼 + 1))
43 fourierdlem6.iltj . . 3 (𝜑𝐼 < 𝐽)
44 zltp1le 12026 . . . 4 ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽))
453, 1, 44syl2anc 586 . . 3 (𝜑 → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽))
4643, 45mpbid 234 . 2 (𝜑 → (𝐼 + 1) ≤ 𝐽)
474, 40readdcld 10664 . . 3 (𝜑 → (𝐼 + 1) ∈ ℝ)
482, 47letri3d 10776 . 2 (𝜑 → (𝐽 = (𝐼 + 1) ↔ (𝐽 ≤ (𝐼 + 1) ∧ (𝐼 + 1) ≤ 𝐽)))
4942, 46, 48mpbir2and 711 1 (𝜑𝐽 = (𝐼 + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1533  wcel 2110   class class class wbr 5058  (class class class)co 7150  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536   < clt 10669  cle 10670  cmin 10864   / cdiv 11291  cz 11975  [,]cicc 12735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-n0 11892  df-z 11976  df-rp 12384  df-icc 12739
This theorem is referenced by:  fourierdlem35  42421  fourierdlem51  42436
  Copyright terms: Public domain W3C validator