| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem6 | Structured version Visualization version GIF version | ||
| Description: 𝑋 is in the periodic partition, when the considered interval is centered at 𝑋. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fourierdlem6.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| fourierdlem6.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| fourierdlem6.altb | ⊢ (𝜑 → 𝐴 < 𝐵) |
| fourierdlem6.t | ⊢ 𝑇 = (𝐵 − 𝐴) |
| fourierdlem6.5 | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
| fourierdlem6.i | ⊢ (𝜑 → 𝐼 ∈ ℤ) |
| fourierdlem6.j | ⊢ (𝜑 → 𝐽 ∈ ℤ) |
| fourierdlem6.iltj | ⊢ (𝜑 → 𝐼 < 𝐽) |
| fourierdlem6.iel | ⊢ (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵)) |
| fourierdlem6.jel | ⊢ (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵)) |
| Ref | Expression |
|---|---|
| fourierdlem6 | ⊢ (𝜑 → 𝐽 = (𝐼 + 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fourierdlem6.j | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ ℤ) | |
| 2 | 1 | zred 12614 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ ℝ) |
| 3 | fourierdlem6.i | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ ℤ) | |
| 4 | 3 | zred 12614 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ ℝ) |
| 5 | 2, 4 | resubcld 11582 | . . . . . 6 ⊢ (𝜑 → (𝐽 − 𝐼) ∈ ℝ) |
| 6 | fourierdlem6.t | . . . . . . 7 ⊢ 𝑇 = (𝐵 − 𝐴) | |
| 7 | fourierdlem6.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 8 | fourierdlem6.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 9 | 7, 8 | resubcld 11582 | . . . . . . 7 ⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) |
| 10 | 6, 9 | eqeltrid 2832 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ ℝ) |
| 11 | 5, 10 | remulcld 11180 | . . . . 5 ⊢ (𝜑 → ((𝐽 − 𝐼) · 𝑇) ∈ ℝ) |
| 12 | fourierdlem6.altb | . . . . . . . 8 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 13 | 8, 7 | posdifd 11741 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
| 14 | 12, 13 | mpbid 232 | . . . . . . 7 ⊢ (𝜑 → 0 < (𝐵 − 𝐴)) |
| 15 | 14, 6 | breqtrrdi 5144 | . . . . . 6 ⊢ (𝜑 → 0 < 𝑇) |
| 16 | 10, 15 | elrpd 12968 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ ℝ+) |
| 17 | fourierdlem6.jel | . . . . . . 7 ⊢ (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵)) | |
| 18 | fourierdlem6.iel | . . . . . . 7 ⊢ (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵)) | |
| 19 | 8, 7, 17, 18 | iccsuble 45490 | . . . . . 6 ⊢ (𝜑 → ((𝑋 + (𝐽 · 𝑇)) − (𝑋 + (𝐼 · 𝑇))) ≤ (𝐵 − 𝐴)) |
| 20 | 2 | recnd 11178 | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ ℂ) |
| 21 | 4 | recnd 11178 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ ℂ) |
| 22 | 10 | recnd 11178 | . . . . . . . 8 ⊢ (𝜑 → 𝑇 ∈ ℂ) |
| 23 | 20, 21, 22 | subdird 11611 | . . . . . . 7 ⊢ (𝜑 → ((𝐽 − 𝐼) · 𝑇) = ((𝐽 · 𝑇) − (𝐼 · 𝑇))) |
| 24 | fourierdlem6.5 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
| 25 | 24 | recnd 11178 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 26 | 2, 10 | remulcld 11180 | . . . . . . . . 9 ⊢ (𝜑 → (𝐽 · 𝑇) ∈ ℝ) |
| 27 | 26 | recnd 11178 | . . . . . . . 8 ⊢ (𝜑 → (𝐽 · 𝑇) ∈ ℂ) |
| 28 | 4, 10 | remulcld 11180 | . . . . . . . . 9 ⊢ (𝜑 → (𝐼 · 𝑇) ∈ ℝ) |
| 29 | 28 | recnd 11178 | . . . . . . . 8 ⊢ (𝜑 → (𝐼 · 𝑇) ∈ ℂ) |
| 30 | 25, 27, 29 | pnpcand 11546 | . . . . . . 7 ⊢ (𝜑 → ((𝑋 + (𝐽 · 𝑇)) − (𝑋 + (𝐼 · 𝑇))) = ((𝐽 · 𝑇) − (𝐼 · 𝑇))) |
| 31 | 23, 30 | eqtr4d 2767 | . . . . . 6 ⊢ (𝜑 → ((𝐽 − 𝐼) · 𝑇) = ((𝑋 + (𝐽 · 𝑇)) − (𝑋 + (𝐼 · 𝑇)))) |
| 32 | 6 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑇 = (𝐵 − 𝐴)) |
| 33 | 19, 31, 32 | 3brtr4d 5134 | . . . . 5 ⊢ (𝜑 → ((𝐽 − 𝐼) · 𝑇) ≤ 𝑇) |
| 34 | 11, 10, 16, 33 | lediv1dd 13029 | . . . 4 ⊢ (𝜑 → (((𝐽 − 𝐼) · 𝑇) / 𝑇) ≤ (𝑇 / 𝑇)) |
| 35 | 5 | recnd 11178 | . . . . 5 ⊢ (𝜑 → (𝐽 − 𝐼) ∈ ℂ) |
| 36 | 15 | gt0ne0d 11718 | . . . . 5 ⊢ (𝜑 → 𝑇 ≠ 0) |
| 37 | 35, 22, 36 | divcan4d 11940 | . . . 4 ⊢ (𝜑 → (((𝐽 − 𝐼) · 𝑇) / 𝑇) = (𝐽 − 𝐼)) |
| 38 | 22, 36 | dividd 11932 | . . . 4 ⊢ (𝜑 → (𝑇 / 𝑇) = 1) |
| 39 | 34, 37, 38 | 3brtr3d 5133 | . . 3 ⊢ (𝜑 → (𝐽 − 𝐼) ≤ 1) |
| 40 | 1red 11151 | . . . 4 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 41 | 2, 4, 40 | lesubadd2d 11753 | . . 3 ⊢ (𝜑 → ((𝐽 − 𝐼) ≤ 1 ↔ 𝐽 ≤ (𝐼 + 1))) |
| 42 | 39, 41 | mpbid 232 | . 2 ⊢ (𝜑 → 𝐽 ≤ (𝐼 + 1)) |
| 43 | fourierdlem6.iltj | . . 3 ⊢ (𝜑 → 𝐼 < 𝐽) | |
| 44 | zltp1le 12559 | . . . 4 ⊢ ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽)) | |
| 45 | 3, 1, 44 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽)) |
| 46 | 43, 45 | mpbid 232 | . 2 ⊢ (𝜑 → (𝐼 + 1) ≤ 𝐽) |
| 47 | 4, 40 | readdcld 11179 | . . 3 ⊢ (𝜑 → (𝐼 + 1) ∈ ℝ) |
| 48 | 2, 47 | letri3d 11292 | . 2 ⊢ (𝜑 → (𝐽 = (𝐼 + 1) ↔ (𝐽 ≤ (𝐼 + 1) ∧ (𝐼 + 1) ≤ 𝐽))) |
| 49 | 42, 46, 48 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐽 = (𝐼 + 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 (class class class)co 7369 ℝcr 11043 0cc0 11044 1c1 11045 + caddc 11047 · cmul 11049 < clt 11184 ≤ cle 11185 − cmin 11381 / cdiv 11811 ℤcz 12505 [,]cicc 13285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-n0 12419 df-z 12506 df-rp 12928 df-icc 13289 |
| This theorem is referenced by: fourierdlem35 46113 fourierdlem51 46128 |
| Copyright terms: Public domain | W3C validator |