| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem6 | Structured version Visualization version GIF version | ||
| Description: 𝑋 is in the periodic partition, when the considered interval is centered at 𝑋. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fourierdlem6.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| fourierdlem6.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| fourierdlem6.altb | ⊢ (𝜑 → 𝐴 < 𝐵) |
| fourierdlem6.t | ⊢ 𝑇 = (𝐵 − 𝐴) |
| fourierdlem6.5 | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
| fourierdlem6.i | ⊢ (𝜑 → 𝐼 ∈ ℤ) |
| fourierdlem6.j | ⊢ (𝜑 → 𝐽 ∈ ℤ) |
| fourierdlem6.iltj | ⊢ (𝜑 → 𝐼 < 𝐽) |
| fourierdlem6.iel | ⊢ (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵)) |
| fourierdlem6.jel | ⊢ (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵)) |
| Ref | Expression |
|---|---|
| fourierdlem6 | ⊢ (𝜑 → 𝐽 = (𝐼 + 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fourierdlem6.j | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ ℤ) | |
| 2 | 1 | zred 12587 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ ℝ) |
| 3 | fourierdlem6.i | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ ℤ) | |
| 4 | 3 | zred 12587 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ ℝ) |
| 5 | 2, 4 | resubcld 11556 | . . . . . 6 ⊢ (𝜑 → (𝐽 − 𝐼) ∈ ℝ) |
| 6 | fourierdlem6.t | . . . . . . 7 ⊢ 𝑇 = (𝐵 − 𝐴) | |
| 7 | fourierdlem6.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 8 | fourierdlem6.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 9 | 7, 8 | resubcld 11556 | . . . . . . 7 ⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) |
| 10 | 6, 9 | eqeltrid 2837 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ ℝ) |
| 11 | 5, 10 | remulcld 11153 | . . . . 5 ⊢ (𝜑 → ((𝐽 − 𝐼) · 𝑇) ∈ ℝ) |
| 12 | fourierdlem6.altb | . . . . . . . 8 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 13 | 8, 7 | posdifd 11715 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
| 14 | 12, 13 | mpbid 232 | . . . . . . 7 ⊢ (𝜑 → 0 < (𝐵 − 𝐴)) |
| 15 | 14, 6 | breqtrrdi 5137 | . . . . . 6 ⊢ (𝜑 → 0 < 𝑇) |
| 16 | 10, 15 | elrpd 12937 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ ℝ+) |
| 17 | fourierdlem6.jel | . . . . . . 7 ⊢ (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵)) | |
| 18 | fourierdlem6.iel | . . . . . . 7 ⊢ (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵)) | |
| 19 | 8, 7, 17, 18 | iccsuble 45681 | . . . . . 6 ⊢ (𝜑 → ((𝑋 + (𝐽 · 𝑇)) − (𝑋 + (𝐼 · 𝑇))) ≤ (𝐵 − 𝐴)) |
| 20 | 2 | recnd 11151 | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ ℂ) |
| 21 | 4 | recnd 11151 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ ℂ) |
| 22 | 10 | recnd 11151 | . . . . . . . 8 ⊢ (𝜑 → 𝑇 ∈ ℂ) |
| 23 | 20, 21, 22 | subdird 11585 | . . . . . . 7 ⊢ (𝜑 → ((𝐽 − 𝐼) · 𝑇) = ((𝐽 · 𝑇) − (𝐼 · 𝑇))) |
| 24 | fourierdlem6.5 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
| 25 | 24 | recnd 11151 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 26 | 2, 10 | remulcld 11153 | . . . . . . . . 9 ⊢ (𝜑 → (𝐽 · 𝑇) ∈ ℝ) |
| 27 | 26 | recnd 11151 | . . . . . . . 8 ⊢ (𝜑 → (𝐽 · 𝑇) ∈ ℂ) |
| 28 | 4, 10 | remulcld 11153 | . . . . . . . . 9 ⊢ (𝜑 → (𝐼 · 𝑇) ∈ ℝ) |
| 29 | 28 | recnd 11151 | . . . . . . . 8 ⊢ (𝜑 → (𝐼 · 𝑇) ∈ ℂ) |
| 30 | 25, 27, 29 | pnpcand 11520 | . . . . . . 7 ⊢ (𝜑 → ((𝑋 + (𝐽 · 𝑇)) − (𝑋 + (𝐼 · 𝑇))) = ((𝐽 · 𝑇) − (𝐼 · 𝑇))) |
| 31 | 23, 30 | eqtr4d 2771 | . . . . . 6 ⊢ (𝜑 → ((𝐽 − 𝐼) · 𝑇) = ((𝑋 + (𝐽 · 𝑇)) − (𝑋 + (𝐼 · 𝑇)))) |
| 32 | 6 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑇 = (𝐵 − 𝐴)) |
| 33 | 19, 31, 32 | 3brtr4d 5127 | . . . . 5 ⊢ (𝜑 → ((𝐽 − 𝐼) · 𝑇) ≤ 𝑇) |
| 34 | 11, 10, 16, 33 | lediv1dd 12998 | . . . 4 ⊢ (𝜑 → (((𝐽 − 𝐼) · 𝑇) / 𝑇) ≤ (𝑇 / 𝑇)) |
| 35 | 5 | recnd 11151 | . . . . 5 ⊢ (𝜑 → (𝐽 − 𝐼) ∈ ℂ) |
| 36 | 15 | gt0ne0d 11692 | . . . . 5 ⊢ (𝜑 → 𝑇 ≠ 0) |
| 37 | 35, 22, 36 | divcan4d 11914 | . . . 4 ⊢ (𝜑 → (((𝐽 − 𝐼) · 𝑇) / 𝑇) = (𝐽 − 𝐼)) |
| 38 | 22, 36 | dividd 11906 | . . . 4 ⊢ (𝜑 → (𝑇 / 𝑇) = 1) |
| 39 | 34, 37, 38 | 3brtr3d 5126 | . . 3 ⊢ (𝜑 → (𝐽 − 𝐼) ≤ 1) |
| 40 | 1red 11124 | . . . 4 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 41 | 2, 4, 40 | lesubadd2d 11727 | . . 3 ⊢ (𝜑 → ((𝐽 − 𝐼) ≤ 1 ↔ 𝐽 ≤ (𝐼 + 1))) |
| 42 | 39, 41 | mpbid 232 | . 2 ⊢ (𝜑 → 𝐽 ≤ (𝐼 + 1)) |
| 43 | fourierdlem6.iltj | . . 3 ⊢ (𝜑 → 𝐼 < 𝐽) | |
| 44 | zltp1le 12532 | . . . 4 ⊢ ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽)) | |
| 45 | 3, 1, 44 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽)) |
| 46 | 43, 45 | mpbid 232 | . 2 ⊢ (𝜑 → (𝐼 + 1) ≤ 𝐽) |
| 47 | 4, 40 | readdcld 11152 | . . 3 ⊢ (𝜑 → (𝐼 + 1) ∈ ℝ) |
| 48 | 2, 47 | letri3d 11266 | . 2 ⊢ (𝜑 → (𝐽 = (𝐼 + 1) ↔ (𝐽 ≤ (𝐼 + 1) ∧ (𝐼 + 1) ≤ 𝐽))) |
| 49 | 42, 46, 48 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐽 = (𝐼 + 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 (class class class)co 7355 ℝcr 11016 0cc0 11017 1c1 11018 + caddc 11020 · cmul 11022 < clt 11157 ≤ cle 11158 − cmin 11355 / cdiv 11785 ℤcz 12479 [,]cicc 13255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-n0 12393 df-z 12480 df-rp 12897 df-icc 13259 |
| This theorem is referenced by: fourierdlem35 46302 fourierdlem51 46317 |
| Copyright terms: Public domain | W3C validator |