| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem6 | Structured version Visualization version GIF version | ||
| Description: 𝑋 is in the periodic partition, when the considered interval is centered at 𝑋. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fourierdlem6.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| fourierdlem6.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| fourierdlem6.altb | ⊢ (𝜑 → 𝐴 < 𝐵) |
| fourierdlem6.t | ⊢ 𝑇 = (𝐵 − 𝐴) |
| fourierdlem6.5 | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
| fourierdlem6.i | ⊢ (𝜑 → 𝐼 ∈ ℤ) |
| fourierdlem6.j | ⊢ (𝜑 → 𝐽 ∈ ℤ) |
| fourierdlem6.iltj | ⊢ (𝜑 → 𝐼 < 𝐽) |
| fourierdlem6.iel | ⊢ (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵)) |
| fourierdlem6.jel | ⊢ (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵)) |
| Ref | Expression |
|---|---|
| fourierdlem6 | ⊢ (𝜑 → 𝐽 = (𝐼 + 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fourierdlem6.j | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ ℤ) | |
| 2 | 1 | zred 12599 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ ℝ) |
| 3 | fourierdlem6.i | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ ℤ) | |
| 4 | 3 | zred 12599 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ ℝ) |
| 5 | 2, 4 | resubcld 11567 | . . . . . 6 ⊢ (𝜑 → (𝐽 − 𝐼) ∈ ℝ) |
| 6 | fourierdlem6.t | . . . . . . 7 ⊢ 𝑇 = (𝐵 − 𝐴) | |
| 7 | fourierdlem6.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 8 | fourierdlem6.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 9 | 7, 8 | resubcld 11567 | . . . . . . 7 ⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) |
| 10 | 6, 9 | eqeltrid 2832 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ ℝ) |
| 11 | 5, 10 | remulcld 11164 | . . . . 5 ⊢ (𝜑 → ((𝐽 − 𝐼) · 𝑇) ∈ ℝ) |
| 12 | fourierdlem6.altb | . . . . . . . 8 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 13 | 8, 7 | posdifd 11726 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
| 14 | 12, 13 | mpbid 232 | . . . . . . 7 ⊢ (𝜑 → 0 < (𝐵 − 𝐴)) |
| 15 | 14, 6 | breqtrrdi 5137 | . . . . . 6 ⊢ (𝜑 → 0 < 𝑇) |
| 16 | 10, 15 | elrpd 12953 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ ℝ+) |
| 17 | fourierdlem6.jel | . . . . . . 7 ⊢ (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵)) | |
| 18 | fourierdlem6.iel | . . . . . . 7 ⊢ (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵)) | |
| 19 | 8, 7, 17, 18 | iccsuble 45520 | . . . . . 6 ⊢ (𝜑 → ((𝑋 + (𝐽 · 𝑇)) − (𝑋 + (𝐼 · 𝑇))) ≤ (𝐵 − 𝐴)) |
| 20 | 2 | recnd 11162 | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ ℂ) |
| 21 | 4 | recnd 11162 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ ℂ) |
| 22 | 10 | recnd 11162 | . . . . . . . 8 ⊢ (𝜑 → 𝑇 ∈ ℂ) |
| 23 | 20, 21, 22 | subdird 11596 | . . . . . . 7 ⊢ (𝜑 → ((𝐽 − 𝐼) · 𝑇) = ((𝐽 · 𝑇) − (𝐼 · 𝑇))) |
| 24 | fourierdlem6.5 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
| 25 | 24 | recnd 11162 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 26 | 2, 10 | remulcld 11164 | . . . . . . . . 9 ⊢ (𝜑 → (𝐽 · 𝑇) ∈ ℝ) |
| 27 | 26 | recnd 11162 | . . . . . . . 8 ⊢ (𝜑 → (𝐽 · 𝑇) ∈ ℂ) |
| 28 | 4, 10 | remulcld 11164 | . . . . . . . . 9 ⊢ (𝜑 → (𝐼 · 𝑇) ∈ ℝ) |
| 29 | 28 | recnd 11162 | . . . . . . . 8 ⊢ (𝜑 → (𝐼 · 𝑇) ∈ ℂ) |
| 30 | 25, 27, 29 | pnpcand 11531 | . . . . . . 7 ⊢ (𝜑 → ((𝑋 + (𝐽 · 𝑇)) − (𝑋 + (𝐼 · 𝑇))) = ((𝐽 · 𝑇) − (𝐼 · 𝑇))) |
| 31 | 23, 30 | eqtr4d 2767 | . . . . . 6 ⊢ (𝜑 → ((𝐽 − 𝐼) · 𝑇) = ((𝑋 + (𝐽 · 𝑇)) − (𝑋 + (𝐼 · 𝑇)))) |
| 32 | 6 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑇 = (𝐵 − 𝐴)) |
| 33 | 19, 31, 32 | 3brtr4d 5127 | . . . . 5 ⊢ (𝜑 → ((𝐽 − 𝐼) · 𝑇) ≤ 𝑇) |
| 34 | 11, 10, 16, 33 | lediv1dd 13014 | . . . 4 ⊢ (𝜑 → (((𝐽 − 𝐼) · 𝑇) / 𝑇) ≤ (𝑇 / 𝑇)) |
| 35 | 5 | recnd 11162 | . . . . 5 ⊢ (𝜑 → (𝐽 − 𝐼) ∈ ℂ) |
| 36 | 15 | gt0ne0d 11703 | . . . . 5 ⊢ (𝜑 → 𝑇 ≠ 0) |
| 37 | 35, 22, 36 | divcan4d 11925 | . . . 4 ⊢ (𝜑 → (((𝐽 − 𝐼) · 𝑇) / 𝑇) = (𝐽 − 𝐼)) |
| 38 | 22, 36 | dividd 11917 | . . . 4 ⊢ (𝜑 → (𝑇 / 𝑇) = 1) |
| 39 | 34, 37, 38 | 3brtr3d 5126 | . . 3 ⊢ (𝜑 → (𝐽 − 𝐼) ≤ 1) |
| 40 | 1red 11135 | . . . 4 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 41 | 2, 4, 40 | lesubadd2d 11738 | . . 3 ⊢ (𝜑 → ((𝐽 − 𝐼) ≤ 1 ↔ 𝐽 ≤ (𝐼 + 1))) |
| 42 | 39, 41 | mpbid 232 | . 2 ⊢ (𝜑 → 𝐽 ≤ (𝐼 + 1)) |
| 43 | fourierdlem6.iltj | . . 3 ⊢ (𝜑 → 𝐼 < 𝐽) | |
| 44 | zltp1le 12544 | . . . 4 ⊢ ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽)) | |
| 45 | 3, 1, 44 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽)) |
| 46 | 43, 45 | mpbid 232 | . 2 ⊢ (𝜑 → (𝐼 + 1) ≤ 𝐽) |
| 47 | 4, 40 | readdcld 11163 | . . 3 ⊢ (𝜑 → (𝐼 + 1) ∈ ℝ) |
| 48 | 2, 47 | letri3d 11277 | . 2 ⊢ (𝜑 → (𝐽 = (𝐼 + 1) ↔ (𝐽 ≤ (𝐼 + 1) ∧ (𝐼 + 1) ≤ 𝐽))) |
| 49 | 42, 46, 48 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐽 = (𝐼 + 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 (class class class)co 7353 ℝcr 11027 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 < clt 11168 ≤ cle 11169 − cmin 11366 / cdiv 11796 ℤcz 12490 [,]cicc 13270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-n0 12404 df-z 12491 df-rp 12913 df-icc 13274 |
| This theorem is referenced by: fourierdlem35 46143 fourierdlem51 46158 |
| Copyright terms: Public domain | W3C validator |