Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem6 Structured version   Visualization version   GIF version

Theorem fourierdlem6 42694
Description: 𝑋 is in the periodic partition, when the considered interval is centered at 𝑋. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem6.a (𝜑𝐴 ∈ ℝ)
fourierdlem6.b (𝜑𝐵 ∈ ℝ)
fourierdlem6.altb (𝜑𝐴 < 𝐵)
fourierdlem6.t 𝑇 = (𝐵𝐴)
fourierdlem6.5 (𝜑𝑋 ∈ ℝ)
fourierdlem6.i (𝜑𝐼 ∈ ℤ)
fourierdlem6.j (𝜑𝐽 ∈ ℤ)
fourierdlem6.iltj (𝜑𝐼 < 𝐽)
fourierdlem6.iel (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵))
fourierdlem6.jel (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵))
Assertion
Ref Expression
fourierdlem6 (𝜑𝐽 = (𝐼 + 1))

Proof of Theorem fourierdlem6
StepHypRef Expression
1 fourierdlem6.j . . . . . . . 8 (𝜑𝐽 ∈ ℤ)
21zred 12075 . . . . . . 7 (𝜑𝐽 ∈ ℝ)
3 fourierdlem6.i . . . . . . . 8 (𝜑𝐼 ∈ ℤ)
43zred 12075 . . . . . . 7 (𝜑𝐼 ∈ ℝ)
52, 4resubcld 11057 . . . . . 6 (𝜑 → (𝐽𝐼) ∈ ℝ)
6 fourierdlem6.t . . . . . . 7 𝑇 = (𝐵𝐴)
7 fourierdlem6.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
8 fourierdlem6.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
97, 8resubcld 11057 . . . . . . 7 (𝜑 → (𝐵𝐴) ∈ ℝ)
106, 9eqeltrid 2918 . . . . . 6 (𝜑𝑇 ∈ ℝ)
115, 10remulcld 10660 . . . . 5 (𝜑 → ((𝐽𝐼) · 𝑇) ∈ ℝ)
12 fourierdlem6.altb . . . . . . . 8 (𝜑𝐴 < 𝐵)
138, 7posdifd 11216 . . . . . . . 8 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
1412, 13mpbid 235 . . . . . . 7 (𝜑 → 0 < (𝐵𝐴))
1514, 6breqtrrdi 5084 . . . . . 6 (𝜑 → 0 < 𝑇)
1610, 15elrpd 12416 . . . . 5 (𝜑𝑇 ∈ ℝ+)
17 fourierdlem6.jel . . . . . . 7 (𝜑 → (𝑋 + (𝐽 · 𝑇)) ∈ (𝐴[,]𝐵))
18 fourierdlem6.iel . . . . . . 7 (𝜑 → (𝑋 + (𝐼 · 𝑇)) ∈ (𝐴[,]𝐵))
198, 7, 17, 18iccsuble 42095 . . . . . 6 (𝜑 → ((𝑋 + (𝐽 · 𝑇)) − (𝑋 + (𝐼 · 𝑇))) ≤ (𝐵𝐴))
202recnd 10658 . . . . . . . 8 (𝜑𝐽 ∈ ℂ)
214recnd 10658 . . . . . . . 8 (𝜑𝐼 ∈ ℂ)
2210recnd 10658 . . . . . . . 8 (𝜑𝑇 ∈ ℂ)
2320, 21, 22subdird 11086 . . . . . . 7 (𝜑 → ((𝐽𝐼) · 𝑇) = ((𝐽 · 𝑇) − (𝐼 · 𝑇)))
24 fourierdlem6.5 . . . . . . . . 9 (𝜑𝑋 ∈ ℝ)
2524recnd 10658 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
262, 10remulcld 10660 . . . . . . . . 9 (𝜑 → (𝐽 · 𝑇) ∈ ℝ)
2726recnd 10658 . . . . . . . 8 (𝜑 → (𝐽 · 𝑇) ∈ ℂ)
284, 10remulcld 10660 . . . . . . . . 9 (𝜑 → (𝐼 · 𝑇) ∈ ℝ)
2928recnd 10658 . . . . . . . 8 (𝜑 → (𝐼 · 𝑇) ∈ ℂ)
3025, 27, 29pnpcand 11023 . . . . . . 7 (𝜑 → ((𝑋 + (𝐽 · 𝑇)) − (𝑋 + (𝐼 · 𝑇))) = ((𝐽 · 𝑇) − (𝐼 · 𝑇)))
3123, 30eqtr4d 2860 . . . . . 6 (𝜑 → ((𝐽𝐼) · 𝑇) = ((𝑋 + (𝐽 · 𝑇)) − (𝑋 + (𝐼 · 𝑇))))
326a1i 11 . . . . . 6 (𝜑𝑇 = (𝐵𝐴))
3319, 31, 323brtr4d 5074 . . . . 5 (𝜑 → ((𝐽𝐼) · 𝑇) ≤ 𝑇)
3411, 10, 16, 33lediv1dd 12477 . . . 4 (𝜑 → (((𝐽𝐼) · 𝑇) / 𝑇) ≤ (𝑇 / 𝑇))
355recnd 10658 . . . . 5 (𝜑 → (𝐽𝐼) ∈ ℂ)
3615gt0ne0d 11193 . . . . 5 (𝜑𝑇 ≠ 0)
3735, 22, 36divcan4d 11411 . . . 4 (𝜑 → (((𝐽𝐼) · 𝑇) / 𝑇) = (𝐽𝐼))
3822, 36dividd 11403 . . . 4 (𝜑 → (𝑇 / 𝑇) = 1)
3934, 37, 383brtr3d 5073 . . 3 (𝜑 → (𝐽𝐼) ≤ 1)
40 1red 10631 . . . 4 (𝜑 → 1 ∈ ℝ)
412, 4, 40lesubadd2d 11228 . . 3 (𝜑 → ((𝐽𝐼) ≤ 1 ↔ 𝐽 ≤ (𝐼 + 1)))
4239, 41mpbid 235 . 2 (𝜑𝐽 ≤ (𝐼 + 1))
43 fourierdlem6.iltj . . 3 (𝜑𝐼 < 𝐽)
44 zltp1le 12020 . . . 4 ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽))
453, 1, 44syl2anc 587 . . 3 (𝜑 → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽))
4643, 45mpbid 235 . 2 (𝜑 → (𝐼 + 1) ≤ 𝐽)
474, 40readdcld 10659 . . 3 (𝜑 → (𝐼 + 1) ∈ ℝ)
482, 47letri3d 10771 . 2 (𝜑 → (𝐽 = (𝐼 + 1) ↔ (𝐽 ≤ (𝐼 + 1) ∧ (𝐼 + 1) ≤ 𝐽)))
4942, 46, 48mpbir2and 712 1 (𝜑𝐽 = (𝐼 + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2114   class class class wbr 5042  (class class class)co 7140  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cz 11969  [,]cicc 12729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-n0 11886  df-z 11970  df-rp 12378  df-icc 12733
This theorem is referenced by:  fourierdlem35  42723  fourierdlem51  42738
  Copyright terms: Public domain W3C validator