MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infinf Structured version   Visualization version   GIF version

Theorem infinf 10589
Description: Equivalence between two infiniteness criteria for sets. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
infinf (𝐴𝐵 → (¬ 𝐴 ∈ Fin ↔ ω ≼ 𝐴))

Proof of Theorem infinf
StepHypRef Expression
1 isfinite 9675 . . 3 (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)
21notbii 320 . 2 𝐴 ∈ Fin ↔ ¬ 𝐴 ≺ ω)
3 omex 9666 . . 3 ω ∈ V
4 domtri 10579 . . 3 ((ω ∈ V ∧ 𝐴𝐵) → (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω))
53, 4mpan 690 . 2 (𝐴𝐵 → (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω))
62, 5bitr4id 290 1 (𝐴𝐵 → (¬ 𝐴 ∈ Fin ↔ ω ≼ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wcel 2107  Vcvv 3464   class class class wbr 5125  ωcom 7870  cdom 8966  csdm 8967  Fincfn 8968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-inf2 9664  ax-ac2 10486
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-se 5620  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7371  df-ov 7417  df-om 7871  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-card 9962  df-ac 10139
This theorem is referenced by:  unirnfdomd  10590  ctbssinf  37348  pibt2  37359
  Copyright terms: Public domain W3C validator