Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infinf | Structured version Visualization version GIF version |
Description: Equivalence between two infiniteness criteria for sets. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
infinf | ⊢ (𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ Fin ↔ ω ≼ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfinite 9371 | . . 3 ⊢ (𝐴 ∈ Fin ↔ 𝐴 ≺ ω) | |
2 | 1 | notbii 319 | . 2 ⊢ (¬ 𝐴 ∈ Fin ↔ ¬ 𝐴 ≺ ω) |
3 | omex 9362 | . . 3 ⊢ ω ∈ V | |
4 | domtri 10296 | . . 3 ⊢ ((ω ∈ V ∧ 𝐴 ∈ 𝐵) → (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω)) | |
5 | 3, 4 | mpan 686 | . 2 ⊢ (𝐴 ∈ 𝐵 → (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω)) |
6 | 2, 5 | bitr4id 289 | 1 ⊢ (𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ Fin ↔ ω ≼ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∈ wcel 2109 Vcvv 3430 class class class wbr 5078 ωcom 7700 ≼ cdom 8705 ≺ csdm 8706 Fincfn 8707 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-inf2 9360 ax-ac2 10203 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-card 9681 df-ac 9856 |
This theorem is referenced by: unirnfdomd 10307 ctbssinf 35556 pibt2 35567 |
Copyright terms: Public domain | W3C validator |