MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infinf Structured version   Visualization version   GIF version

Theorem infinf 10454
Description: Equivalence between two infiniteness criteria for sets. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
infinf (𝐴𝐵 → (¬ 𝐴 ∈ Fin ↔ ω ≼ 𝐴))

Proof of Theorem infinf
StepHypRef Expression
1 isfinite 9542 . . 3 (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)
21notbii 320 . 2 𝐴 ∈ Fin ↔ ¬ 𝐴 ≺ ω)
3 omex 9533 . . 3 ω ∈ V
4 domtri 10444 . . 3 ((ω ∈ V ∧ 𝐴𝐵) → (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω))
53, 4mpan 690 . 2 (𝐴𝐵 → (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω))
62, 5bitr4id 290 1 (𝐴𝐵 → (¬ 𝐴 ∈ Fin ↔ ω ≼ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wcel 2111  Vcvv 3436   class class class wbr 5091  ωcom 7796  cdom 8867  csdm 8868  Fincfn 8869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-ac2 10351
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9829  df-ac 10004
This theorem is referenced by:  unirnfdomd  10455  ctbssinf  37439  pibt2  37450
  Copyright terms: Public domain W3C validator