Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcoval3 Structured version   Visualization version   GIF version

Theorem itcoval3 46999
Description: A function iterated three times. (Contributed by AV, 2-May-2024.)
Assertion
Ref Expression
itcoval3 ((Rel 𝐹𝐹𝑉) → ((IterComp‘𝐹)‘3) = (𝐹 ∘ (𝐹𝐹)))

Proof of Theorem itcoval3
Dummy variables 𝑔 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itcoval 46995 . . . 4 (𝐹𝑉 → (IterComp‘𝐹) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))))
21fveq1d 6880 . . 3 (𝐹𝑉 → ((IterComp‘𝐹)‘3) = (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘3))
32adantl 482 . 2 ((Rel 𝐹𝐹𝑉) → ((IterComp‘𝐹)‘3) = (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘3))
4 nn0uz 12846 . . 3 0 = (ℤ‘0)
5 2nn0 12471 . . . 4 2 ∈ ℕ0
65a1i 11 . . 3 ((Rel 𝐹𝐹𝑉) → 2 ∈ ℕ0)
7 df-3 12258 . . 3 3 = (2 + 1)
81eqcomd 2737 . . . . . 6 (𝐹𝑉 → seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))) = (IterComp‘𝐹))
98fveq1d 6880 . . . . 5 (𝐹𝑉 → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘2) = ((IterComp‘𝐹)‘2))
109adantl 482 . . . 4 ((Rel 𝐹𝐹𝑉) → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘2) = ((IterComp‘𝐹)‘2))
11 itcoval2 46998 . . . 4 ((Rel 𝐹𝐹𝑉) → ((IterComp‘𝐹)‘2) = (𝐹𝐹))
1210, 11eqtrd 2771 . . 3 ((Rel 𝐹𝐹𝑉) → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘2) = (𝐹𝐹))
13 eqidd 2732 . . . 4 ((Rel 𝐹𝐹𝑉) → (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))
14 3ne0 12300 . . . . . . . 8 3 ≠ 0
15 neeq1 3002 . . . . . . . 8 (𝑖 = 3 → (𝑖 ≠ 0 ↔ 3 ≠ 0))
1614, 15mpbiri 257 . . . . . . 7 (𝑖 = 3 → 𝑖 ≠ 0)
1716neneqd 2944 . . . . . 6 (𝑖 = 3 → ¬ 𝑖 = 0)
1817iffalsed 4533 . . . . 5 (𝑖 = 3 → if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹) = 𝐹)
1918adantl 482 . . . 4 (((Rel 𝐹𝐹𝑉) ∧ 𝑖 = 3) → if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹) = 𝐹)
20 3nn0 12472 . . . . 5 3 ∈ ℕ0
2120a1i 11 . . . 4 ((Rel 𝐹𝐹𝑉) → 3 ∈ ℕ0)
22 simpr 485 . . . 4 ((Rel 𝐹𝐹𝑉) → 𝐹𝑉)
2313, 19, 21, 22fvmptd 6991 . . 3 ((Rel 𝐹𝐹𝑉) → ((𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))‘3) = 𝐹)
244, 6, 7, 12, 23seqp1d 13965 . 2 ((Rel 𝐹𝐹𝑉) → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘3) = ((𝐹𝐹)(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔))𝐹))
25 eqidd 2732 . . . 4 (𝐹𝑉 → (𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)) = (𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)))
26 coeq2 5850 . . . . 5 (𝑔 = (𝐹𝐹) → (𝐹𝑔) = (𝐹 ∘ (𝐹𝐹)))
2726ad2antrl 726 . . . 4 ((𝐹𝑉 ∧ (𝑔 = (𝐹𝐹) ∧ 𝑗 = 𝐹)) → (𝐹𝑔) = (𝐹 ∘ (𝐹𝐹)))
28 coexg 7902 . . . . 5 ((𝐹𝑉𝐹𝑉) → (𝐹𝐹) ∈ V)
2928anidms 567 . . . 4 (𝐹𝑉 → (𝐹𝐹) ∈ V)
30 elex 3491 . . . 4 (𝐹𝑉𝐹 ∈ V)
31 coexg 7902 . . . . . 6 ((𝐹𝑉 ∧ (𝐹𝐹) ∈ V) → (𝐹 ∘ (𝐹𝐹)) ∈ V)
3228, 31syldan 591 . . . . 5 ((𝐹𝑉𝐹𝑉) → (𝐹 ∘ (𝐹𝐹)) ∈ V)
3332anidms 567 . . . 4 (𝐹𝑉 → (𝐹 ∘ (𝐹𝐹)) ∈ V)
3425, 27, 29, 30, 33ovmpod 7543 . . 3 (𝐹𝑉 → ((𝐹𝐹)(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔))𝐹) = (𝐹 ∘ (𝐹𝐹)))
3534adantl 482 . 2 ((Rel 𝐹𝐹𝑉) → ((𝐹𝐹)(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔))𝐹) = (𝐹 ∘ (𝐹𝐹)))
363, 24, 353eqtrd 2775 1 ((Rel 𝐹𝐹𝑉) → ((IterComp‘𝐹)‘3) = (𝐹 ∘ (𝐹𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2939  Vcvv 3473  ifcif 4522  cmpt 5224   I cid 5566  dom cdm 5669  cres 5671  ccom 5673  Rel wrel 5674  cfv 6532  (class class class)co 7393  cmpo 7395  0cc0 11092  2c2 12249  3c3 12250  0cn0 12454  seqcseq 13948  IterCompcitco 46991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-inf2 9618  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-2 12257  df-3 12258  df-n0 12455  df-z 12541  df-uz 12805  df-seq 13949  df-itco 46993
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator