Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcoval3 Structured version   Visualization version   GIF version

Theorem itcoval3 46011
Description: A function iterated three times. (Contributed by AV, 2-May-2024.)
Assertion
Ref Expression
itcoval3 ((Rel 𝐹𝐹𝑉) → ((IterComp‘𝐹)‘3) = (𝐹 ∘ (𝐹𝐹)))

Proof of Theorem itcoval3
Dummy variables 𝑔 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itcoval 46007 . . . 4 (𝐹𝑉 → (IterComp‘𝐹) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))))
21fveq1d 6776 . . 3 (𝐹𝑉 → ((IterComp‘𝐹)‘3) = (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘3))
32adantl 482 . 2 ((Rel 𝐹𝐹𝑉) → ((IterComp‘𝐹)‘3) = (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘3))
4 nn0uz 12620 . . 3 0 = (ℤ‘0)
5 2nn0 12250 . . . 4 2 ∈ ℕ0
65a1i 11 . . 3 ((Rel 𝐹𝐹𝑉) → 2 ∈ ℕ0)
7 df-3 12037 . . 3 3 = (2 + 1)
81eqcomd 2744 . . . . . 6 (𝐹𝑉 → seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))) = (IterComp‘𝐹))
98fveq1d 6776 . . . . 5 (𝐹𝑉 → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘2) = ((IterComp‘𝐹)‘2))
109adantl 482 . . . 4 ((Rel 𝐹𝐹𝑉) → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘2) = ((IterComp‘𝐹)‘2))
11 itcoval2 46010 . . . 4 ((Rel 𝐹𝐹𝑉) → ((IterComp‘𝐹)‘2) = (𝐹𝐹))
1210, 11eqtrd 2778 . . 3 ((Rel 𝐹𝐹𝑉) → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘2) = (𝐹𝐹))
13 eqidd 2739 . . . 4 ((Rel 𝐹𝐹𝑉) → (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))
14 3ne0 12079 . . . . . . . 8 3 ≠ 0
15 neeq1 3006 . . . . . . . 8 (𝑖 = 3 → (𝑖 ≠ 0 ↔ 3 ≠ 0))
1614, 15mpbiri 257 . . . . . . 7 (𝑖 = 3 → 𝑖 ≠ 0)
1716neneqd 2948 . . . . . 6 (𝑖 = 3 → ¬ 𝑖 = 0)
1817iffalsed 4470 . . . . 5 (𝑖 = 3 → if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹) = 𝐹)
1918adantl 482 . . . 4 (((Rel 𝐹𝐹𝑉) ∧ 𝑖 = 3) → if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹) = 𝐹)
20 3nn0 12251 . . . . 5 3 ∈ ℕ0
2120a1i 11 . . . 4 ((Rel 𝐹𝐹𝑉) → 3 ∈ ℕ0)
22 simpr 485 . . . 4 ((Rel 𝐹𝐹𝑉) → 𝐹𝑉)
2313, 19, 21, 22fvmptd 6882 . . 3 ((Rel 𝐹𝐹𝑉) → ((𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))‘3) = 𝐹)
244, 6, 7, 12, 23seqp1d 13738 . 2 ((Rel 𝐹𝐹𝑉) → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘3) = ((𝐹𝐹)(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔))𝐹))
25 eqidd 2739 . . . 4 (𝐹𝑉 → (𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)) = (𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)))
26 coeq2 5767 . . . . 5 (𝑔 = (𝐹𝐹) → (𝐹𝑔) = (𝐹 ∘ (𝐹𝐹)))
2726ad2antrl 725 . . . 4 ((𝐹𝑉 ∧ (𝑔 = (𝐹𝐹) ∧ 𝑗 = 𝐹)) → (𝐹𝑔) = (𝐹 ∘ (𝐹𝐹)))
28 coexg 7776 . . . . 5 ((𝐹𝑉𝐹𝑉) → (𝐹𝐹) ∈ V)
2928anidms 567 . . . 4 (𝐹𝑉 → (𝐹𝐹) ∈ V)
30 elex 3450 . . . 4 (𝐹𝑉𝐹 ∈ V)
31 coexg 7776 . . . . . 6 ((𝐹𝑉 ∧ (𝐹𝐹) ∈ V) → (𝐹 ∘ (𝐹𝐹)) ∈ V)
3228, 31syldan 591 . . . . 5 ((𝐹𝑉𝐹𝑉) → (𝐹 ∘ (𝐹𝐹)) ∈ V)
3332anidms 567 . . . 4 (𝐹𝑉 → (𝐹 ∘ (𝐹𝐹)) ∈ V)
3425, 27, 29, 30, 33ovmpod 7425 . . 3 (𝐹𝑉 → ((𝐹𝐹)(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔))𝐹) = (𝐹 ∘ (𝐹𝐹)))
3534adantl 482 . 2 ((Rel 𝐹𝐹𝑉) → ((𝐹𝐹)(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔))𝐹) = (𝐹 ∘ (𝐹𝐹)))
363, 24, 353eqtrd 2782 1 ((Rel 𝐹𝐹𝑉) → ((IterComp‘𝐹)‘3) = (𝐹 ∘ (𝐹𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  ifcif 4459  cmpt 5157   I cid 5488  dom cdm 5589  cres 5591  ccom 5593  Rel wrel 5594  cfv 6433  (class class class)co 7275  cmpo 7277  0cc0 10871  2c2 12028  3c3 12029  0cn0 12233  seqcseq 13721  IterCompcitco 46003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-seq 13722  df-itco 46005
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator