Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcovalsuc Structured version   Visualization version   GIF version

Theorem itcovalsuc 45468
Description: The value of the function that returns the n-th iterate of a function with regard to composition at a successor. (Contributed by AV, 4-May-2024.)
Assertion
Ref Expression
itcovalsuc ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → ((IterComp‘𝐹)‘(𝑌 + 1)) = (𝐺(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔))𝐹))
Distinct variable group:   𝑔,𝐹,𝑗
Allowed substitution hints:   𝐺(𝑔,𝑗)   𝑉(𝑔,𝑗)   𝑌(𝑔,𝑗)

Proof of Theorem itcovalsuc
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 simp1 1133 . . 3 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → 𝐹𝑉)
2 itcoval 45462 . . . 4 (𝐹𝑉 → (IterComp‘𝐹) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))))
32fveq1d 6660 . . 3 (𝐹𝑉 → ((IterComp‘𝐹)‘(𝑌 + 1)) = (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘(𝑌 + 1)))
41, 3syl 17 . 2 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → ((IterComp‘𝐹)‘(𝑌 + 1)) = (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘(𝑌 + 1)))
5 nn0uz 12320 . . 3 0 = (ℤ‘0)
6 simp2 1134 . . 3 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → 𝑌 ∈ ℕ0)
7 eqid 2758 . . 3 (𝑌 + 1) = (𝑌 + 1)
82adantr 484 . . . . . 6 ((𝐹𝑉𝑌 ∈ ℕ0) → (IterComp‘𝐹) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))))
98fveq1d 6660 . . . . 5 ((𝐹𝑉𝑌 ∈ ℕ0) → ((IterComp‘𝐹)‘𝑌) = (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘𝑌))
109eqeq1d 2760 . . . 4 ((𝐹𝑉𝑌 ∈ ℕ0) → (((IterComp‘𝐹)‘𝑌) = 𝐺 ↔ (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘𝑌) = 𝐺))
1110biimp3a 1466 . . 3 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘𝑌) = 𝐺)
12 eqidd 2759 . . . 4 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))
13 nn0p1gt0 11963 . . . . . . . . . 10 (𝑌 ∈ ℕ0 → 0 < (𝑌 + 1))
14133ad2ant2 1131 . . . . . . . . 9 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → 0 < (𝑌 + 1))
1514gt0ne0d 11242 . . . . . . . 8 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → (𝑌 + 1) ≠ 0)
1615adantr 484 . . . . . . 7 (((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) ∧ 𝑖 = (𝑌 + 1)) → (𝑌 + 1) ≠ 0)
17 neeq1 3013 . . . . . . . 8 (𝑖 = (𝑌 + 1) → (𝑖 ≠ 0 ↔ (𝑌 + 1) ≠ 0))
1817adantl 485 . . . . . . 7 (((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) ∧ 𝑖 = (𝑌 + 1)) → (𝑖 ≠ 0 ↔ (𝑌 + 1) ≠ 0))
1916, 18mpbird 260 . . . . . 6 (((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) ∧ 𝑖 = (𝑌 + 1)) → 𝑖 ≠ 0)
2019neneqd 2956 . . . . 5 (((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) ∧ 𝑖 = (𝑌 + 1)) → ¬ 𝑖 = 0)
2120iffalsed 4431 . . . 4 (((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) ∧ 𝑖 = (𝑌 + 1)) → if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹) = 𝐹)
22 peano2nn0 11974 . . . . 5 (𝑌 ∈ ℕ0 → (𝑌 + 1) ∈ ℕ0)
23223ad2ant2 1131 . . . 4 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → (𝑌 + 1) ∈ ℕ0)
2412, 21, 23, 1fvmptd 6766 . . 3 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → ((𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))‘(𝑌 + 1)) = 𝐹)
255, 6, 7, 11, 24seqp1d 13435 . 2 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘(𝑌 + 1)) = (𝐺(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔))𝐹))
264, 25eqtrd 2793 1 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → ((IterComp‘𝐹)‘(𝑌 + 1)) = (𝐺(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔))𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2951  Vcvv 3409  ifcif 4420   class class class wbr 5032  cmpt 5112   I cid 5429  dom cdm 5524  cres 5526  ccom 5528  cfv 6335  (class class class)co 7150  cmpo 7152  0cc0 10575  1c1 10576   + caddc 10578   < clt 10713  0cn0 11934  seqcseq 13418  IterCompcitco 45458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-n0 11935  df-z 12021  df-uz 12283  df-seq 13419  df-itco 45460
This theorem is referenced by:  itcovalsucov  45469
  Copyright terms: Public domain W3C validator