Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcovalsuc Structured version   Visualization version   GIF version

Theorem itcovalsuc 48588
Description: The value of the function that returns the n-th iterate of a function with regard to composition at a successor. (Contributed by AV, 4-May-2024.)
Assertion
Ref Expression
itcovalsuc ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → ((IterComp‘𝐹)‘(𝑌 + 1)) = (𝐺(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔))𝐹))
Distinct variable group:   𝑔,𝐹,𝑗
Allowed substitution hints:   𝐺(𝑔,𝑗)   𝑉(𝑔,𝑗)   𝑌(𝑔,𝑗)

Proof of Theorem itcovalsuc
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 simp1 1137 . . 3 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → 𝐹𝑉)
2 itcoval 48582 . . . 4 (𝐹𝑉 → (IterComp‘𝐹) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))))
32fveq1d 6908 . . 3 (𝐹𝑉 → ((IterComp‘𝐹)‘(𝑌 + 1)) = (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘(𝑌 + 1)))
41, 3syl 17 . 2 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → ((IterComp‘𝐹)‘(𝑌 + 1)) = (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘(𝑌 + 1)))
5 nn0uz 12920 . . 3 0 = (ℤ‘0)
6 simp2 1138 . . 3 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → 𝑌 ∈ ℕ0)
7 eqid 2737 . . 3 (𝑌 + 1) = (𝑌 + 1)
82adantr 480 . . . . . 6 ((𝐹𝑉𝑌 ∈ ℕ0) → (IterComp‘𝐹) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))))
98fveq1d 6908 . . . . 5 ((𝐹𝑉𝑌 ∈ ℕ0) → ((IterComp‘𝐹)‘𝑌) = (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘𝑌))
109eqeq1d 2739 . . . 4 ((𝐹𝑉𝑌 ∈ ℕ0) → (((IterComp‘𝐹)‘𝑌) = 𝐺 ↔ (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘𝑌) = 𝐺))
1110biimp3a 1471 . . 3 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘𝑌) = 𝐺)
12 eqidd 2738 . . . 4 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))
13 nn0p1gt0 12555 . . . . . . . . . 10 (𝑌 ∈ ℕ0 → 0 < (𝑌 + 1))
14133ad2ant2 1135 . . . . . . . . 9 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → 0 < (𝑌 + 1))
1514gt0ne0d 11827 . . . . . . . 8 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → (𝑌 + 1) ≠ 0)
1615adantr 480 . . . . . . 7 (((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) ∧ 𝑖 = (𝑌 + 1)) → (𝑌 + 1) ≠ 0)
17 neeq1 3003 . . . . . . . 8 (𝑖 = (𝑌 + 1) → (𝑖 ≠ 0 ↔ (𝑌 + 1) ≠ 0))
1817adantl 481 . . . . . . 7 (((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) ∧ 𝑖 = (𝑌 + 1)) → (𝑖 ≠ 0 ↔ (𝑌 + 1) ≠ 0))
1916, 18mpbird 257 . . . . . 6 (((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) ∧ 𝑖 = (𝑌 + 1)) → 𝑖 ≠ 0)
2019neneqd 2945 . . . . 5 (((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) ∧ 𝑖 = (𝑌 + 1)) → ¬ 𝑖 = 0)
2120iffalsed 4536 . . . 4 (((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) ∧ 𝑖 = (𝑌 + 1)) → if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹) = 𝐹)
22 peano2nn0 12566 . . . . 5 (𝑌 ∈ ℕ0 → (𝑌 + 1) ∈ ℕ0)
23223ad2ant2 1135 . . . 4 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → (𝑌 + 1) ∈ ℕ0)
2412, 21, 23, 1fvmptd 7023 . . 3 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → ((𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))‘(𝑌 + 1)) = 𝐹)
255, 6, 7, 11, 24seqp1d 14059 . 2 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘(𝑌 + 1)) = (𝐺(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔))𝐹))
264, 25eqtrd 2777 1 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → ((IterComp‘𝐹)‘(𝑌 + 1)) = (𝐺(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔))𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  Vcvv 3480  ifcif 4525   class class class wbr 5143  cmpt 5225   I cid 5577  dom cdm 5685  cres 5687  ccom 5689  cfv 6561  (class class class)co 7431  cmpo 7433  0cc0 11155  1c1 11156   + caddc 11158   < clt 11295  0cn0 12526  seqcseq 14042  IterCompcitco 48578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-seq 14043  df-itco 48580
This theorem is referenced by:  itcovalsucov  48589
  Copyright terms: Public domain W3C validator