Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcovalsuc Structured version   Visualization version   GIF version

Theorem itcovalsuc 45431
Description: The value of the function that returns the n-th iterate of a function with regard to composition at a successor. (Contributed by AV, 4-May-2024.)
Assertion
Ref Expression
itcovalsuc ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → ((IterComp‘𝐹)‘(𝑌 + 1)) = (𝐺(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔))𝐹))
Distinct variable group:   𝑔,𝐹,𝑗
Allowed substitution hints:   𝐺(𝑔,𝑗)   𝑉(𝑔,𝑗)   𝑌(𝑔,𝑗)

Proof of Theorem itcovalsuc
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 simp1 1134 . . 3 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → 𝐹𝑉)
2 itcoval 45425 . . . 4 (𝐹𝑉 → (IterComp‘𝐹) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))))
32fveq1d 6653 . . 3 (𝐹𝑉 → ((IterComp‘𝐹)‘(𝑌 + 1)) = (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘(𝑌 + 1)))
41, 3syl 17 . 2 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → ((IterComp‘𝐹)‘(𝑌 + 1)) = (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘(𝑌 + 1)))
5 nn0uz 12305 . . 3 0 = (ℤ‘0)
6 simp2 1135 . . 3 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → 𝑌 ∈ ℕ0)
7 eqid 2759 . . 3 (𝑌 + 1) = (𝑌 + 1)
82adantr 485 . . . . . 6 ((𝐹𝑉𝑌 ∈ ℕ0) → (IterComp‘𝐹) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))))
98fveq1d 6653 . . . . 5 ((𝐹𝑉𝑌 ∈ ℕ0) → ((IterComp‘𝐹)‘𝑌) = (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘𝑌))
109eqeq1d 2761 . . . 4 ((𝐹𝑉𝑌 ∈ ℕ0) → (((IterComp‘𝐹)‘𝑌) = 𝐺 ↔ (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘𝑌) = 𝐺))
1110biimp3a 1467 . . 3 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘𝑌) = 𝐺)
12 eqidd 2760 . . . 4 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))
13 nn0p1gt0 11948 . . . . . . . . . 10 (𝑌 ∈ ℕ0 → 0 < (𝑌 + 1))
14133ad2ant2 1132 . . . . . . . . 9 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → 0 < (𝑌 + 1))
1514gt0ne0d 11227 . . . . . . . 8 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → (𝑌 + 1) ≠ 0)
1615adantr 485 . . . . . . 7 (((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) ∧ 𝑖 = (𝑌 + 1)) → (𝑌 + 1) ≠ 0)
17 neeq1 3011 . . . . . . . 8 (𝑖 = (𝑌 + 1) → (𝑖 ≠ 0 ↔ (𝑌 + 1) ≠ 0))
1817adantl 486 . . . . . . 7 (((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) ∧ 𝑖 = (𝑌 + 1)) → (𝑖 ≠ 0 ↔ (𝑌 + 1) ≠ 0))
1916, 18mpbird 260 . . . . . 6 (((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) ∧ 𝑖 = (𝑌 + 1)) → 𝑖 ≠ 0)
2019neneqd 2954 . . . . 5 (((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) ∧ 𝑖 = (𝑌 + 1)) → ¬ 𝑖 = 0)
2120iffalsed 4424 . . . 4 (((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) ∧ 𝑖 = (𝑌 + 1)) → if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹) = 𝐹)
22 peano2nn0 11959 . . . . 5 (𝑌 ∈ ℕ0 → (𝑌 + 1) ∈ ℕ0)
23223ad2ant2 1132 . . . 4 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → (𝑌 + 1) ∈ ℕ0)
2412, 21, 23, 1fvmptd 6759 . . 3 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → ((𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))‘(𝑌 + 1)) = 𝐹)
255, 6, 7, 11, 24seqp1d 13420 . 2 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘(𝑌 + 1)) = (𝐺(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔))𝐹))
264, 25eqtrd 2794 1 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → ((IterComp‘𝐹)‘(𝑌 + 1)) = (𝐺(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔))𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400  w3a 1085   = wceq 1539  wcel 2112  wne 2949  Vcvv 3407  ifcif 4413   class class class wbr 5025  cmpt 5105   I cid 5422  dom cdm 5517  cres 5519  ccom 5521  cfv 6328  (class class class)co 7143  cmpo 7145  0cc0 10560  1c1 10561   + caddc 10563   < clt 10698  0cn0 11919  seqcseq 13403  IterCompcitco 45421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-inf2 9122  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-n0 11920  df-z 12006  df-uz 12268  df-seq 13404  df-itco 45423
This theorem is referenced by:  itcovalsucov  45432
  Copyright terms: Public domain W3C validator