Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcovalsuc Structured version   Visualization version   GIF version

Theorem itcovalsuc 47255
Description: The value of the function that returns the n-th iterate of a function with regard to composition at a successor. (Contributed by AV, 4-May-2024.)
Assertion
Ref Expression
itcovalsuc ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → ((IterComp‘𝐹)‘(𝑌 + 1)) = (𝐺(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔))𝐹))
Distinct variable group:   𝑔,𝐹,𝑗
Allowed substitution hints:   𝐺(𝑔,𝑗)   𝑉(𝑔,𝑗)   𝑌(𝑔,𝑗)

Proof of Theorem itcovalsuc
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 simp1 1137 . . 3 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → 𝐹𝑉)
2 itcoval 47249 . . . 4 (𝐹𝑉 → (IterComp‘𝐹) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))))
32fveq1d 6890 . . 3 (𝐹𝑉 → ((IterComp‘𝐹)‘(𝑌 + 1)) = (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘(𝑌 + 1)))
41, 3syl 17 . 2 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → ((IterComp‘𝐹)‘(𝑌 + 1)) = (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘(𝑌 + 1)))
5 nn0uz 12860 . . 3 0 = (ℤ‘0)
6 simp2 1138 . . 3 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → 𝑌 ∈ ℕ0)
7 eqid 2733 . . 3 (𝑌 + 1) = (𝑌 + 1)
82adantr 482 . . . . . 6 ((𝐹𝑉𝑌 ∈ ℕ0) → (IterComp‘𝐹) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))))
98fveq1d 6890 . . . . 5 ((𝐹𝑉𝑌 ∈ ℕ0) → ((IterComp‘𝐹)‘𝑌) = (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘𝑌))
109eqeq1d 2735 . . . 4 ((𝐹𝑉𝑌 ∈ ℕ0) → (((IterComp‘𝐹)‘𝑌) = 𝐺 ↔ (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘𝑌) = 𝐺))
1110biimp3a 1470 . . 3 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘𝑌) = 𝐺)
12 eqidd 2734 . . . 4 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))
13 nn0p1gt0 12497 . . . . . . . . . 10 (𝑌 ∈ ℕ0 → 0 < (𝑌 + 1))
14133ad2ant2 1135 . . . . . . . . 9 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → 0 < (𝑌 + 1))
1514gt0ne0d 11774 . . . . . . . 8 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → (𝑌 + 1) ≠ 0)
1615adantr 482 . . . . . . 7 (((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) ∧ 𝑖 = (𝑌 + 1)) → (𝑌 + 1) ≠ 0)
17 neeq1 3004 . . . . . . . 8 (𝑖 = (𝑌 + 1) → (𝑖 ≠ 0 ↔ (𝑌 + 1) ≠ 0))
1817adantl 483 . . . . . . 7 (((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) ∧ 𝑖 = (𝑌 + 1)) → (𝑖 ≠ 0 ↔ (𝑌 + 1) ≠ 0))
1916, 18mpbird 257 . . . . . 6 (((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) ∧ 𝑖 = (𝑌 + 1)) → 𝑖 ≠ 0)
2019neneqd 2946 . . . . 5 (((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) ∧ 𝑖 = (𝑌 + 1)) → ¬ 𝑖 = 0)
2120iffalsed 4538 . . . 4 (((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) ∧ 𝑖 = (𝑌 + 1)) → if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹) = 𝐹)
22 peano2nn0 12508 . . . . 5 (𝑌 ∈ ℕ0 → (𝑌 + 1) ∈ ℕ0)
23223ad2ant2 1135 . . . 4 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → (𝑌 + 1) ∈ ℕ0)
2412, 21, 23, 1fvmptd 7001 . . 3 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → ((𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))‘(𝑌 + 1)) = 𝐹)
255, 6, 7, 11, 24seqp1d 13979 . 2 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘(𝑌 + 1)) = (𝐺(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔))𝐹))
264, 25eqtrd 2773 1 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → ((IterComp‘𝐹)‘(𝑌 + 1)) = (𝐺(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔))𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  Vcvv 3475  ifcif 4527   class class class wbr 5147  cmpt 5230   I cid 5572  dom cdm 5675  cres 5677  ccom 5679  cfv 6540  (class class class)co 7404  cmpo 7406  0cc0 11106  1c1 11107   + caddc 11109   < clt 11244  0cn0 12468  seqcseq 13962  IterCompcitco 47245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-seq 13963  df-itco 47247
This theorem is referenced by:  itcovalsucov  47256
  Copyright terms: Public domain W3C validator