| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > itcoval2 | Structured version Visualization version GIF version | ||
| Description: A function iterated twice. (Contributed by AV, 2-May-2024.) |
| Ref | Expression |
|---|---|
| itcoval2 | ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → ((IterComp‘𝐹)‘2) = (𝐹 ∘ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itcoval 48621 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → (IterComp‘𝐹) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))) | |
| 2 | 1 | fveq1d 6883 | . . 3 ⊢ (𝐹 ∈ 𝑉 → ((IterComp‘𝐹)‘2) = (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘2)) |
| 3 | 2 | adantl 481 | . 2 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → ((IterComp‘𝐹)‘2) = (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘2)) |
| 4 | nn0uz 12899 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
| 5 | 1nn0 12522 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 6 | 5 | a1i 11 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → 1 ∈ ℕ0) |
| 7 | df-2 12308 | . . 3 ⊢ 2 = (1 + 1) | |
| 8 | 1 | eqcomd 2742 | . . . . . 6 ⊢ (𝐹 ∈ 𝑉 → seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))) = (IterComp‘𝐹)) |
| 9 | 8 | fveq1d 6883 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘1) = ((IterComp‘𝐹)‘1)) |
| 10 | 9 | adantl 481 | . . . 4 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘1) = ((IterComp‘𝐹)‘1)) |
| 11 | itcoval1 48623 | . . . 4 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → ((IterComp‘𝐹)‘1) = 𝐹) | |
| 12 | 10, 11 | eqtrd 2771 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘1) = 𝐹) |
| 13 | eqidd 2737 | . . . 4 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))) | |
| 14 | 2ne0 12349 | . . . . . . . 8 ⊢ 2 ≠ 0 | |
| 15 | neeq1 2995 | . . . . . . . 8 ⊢ (𝑖 = 2 → (𝑖 ≠ 0 ↔ 2 ≠ 0)) | |
| 16 | 14, 15 | mpbiri 258 | . . . . . . 7 ⊢ (𝑖 = 2 → 𝑖 ≠ 0) |
| 17 | 16 | neneqd 2938 | . . . . . 6 ⊢ (𝑖 = 2 → ¬ 𝑖 = 0) |
| 18 | 17 | iffalsed 4516 | . . . . 5 ⊢ (𝑖 = 2 → if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹) = 𝐹) |
| 19 | 18 | adantl 481 | . . . 4 ⊢ (((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑖 = 2) → if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹) = 𝐹) |
| 20 | 2nn0 12523 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 21 | 20 | a1i 11 | . . . 4 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → 2 ∈ ℕ0) |
| 22 | simpr 484 | . . . 4 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → 𝐹 ∈ 𝑉) | |
| 23 | 13, 19, 21, 22 | fvmptd 6998 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → ((𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))‘2) = 𝐹) |
| 24 | 4, 6, 7, 12, 23 | seqp1d 14041 | . 2 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘2) = (𝐹(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔))𝐹)) |
| 25 | eqidd 2737 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → (𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)) = (𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔))) | |
| 26 | coeq2 5843 | . . . . 5 ⊢ (𝑔 = 𝐹 → (𝐹 ∘ 𝑔) = (𝐹 ∘ 𝐹)) | |
| 27 | 26 | ad2antrl 728 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ (𝑔 = 𝐹 ∧ 𝑗 = 𝐹)) → (𝐹 ∘ 𝑔) = (𝐹 ∘ 𝐹)) |
| 28 | elex 3485 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
| 29 | coexg 7930 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹 ∈ 𝑉) → (𝐹 ∘ 𝐹) ∈ V) | |
| 30 | 29 | anidms 566 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∘ 𝐹) ∈ V) |
| 31 | 25, 27, 28, 28, 30 | ovmpod 7564 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (𝐹(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔))𝐹) = (𝐹 ∘ 𝐹)) |
| 32 | 31 | adantl 481 | . 2 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → (𝐹(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔))𝐹) = (𝐹 ∘ 𝐹)) |
| 33 | 3, 24, 32 | 3eqtrd 2775 | 1 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → ((IterComp‘𝐹)‘2) = (𝐹 ∘ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 Vcvv 3464 ifcif 4505 ↦ cmpt 5206 I cid 5552 dom cdm 5659 ↾ cres 5661 ∘ ccom 5663 Rel wrel 5664 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 0cc0 11134 1c1 11135 2c2 12300 ℕ0cn0 12506 seqcseq 14024 IterCompcitco 48617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-n0 12507 df-z 12594 df-uz 12858 df-seq 14025 df-itco 48619 |
| This theorem is referenced by: itcoval3 48625 |
| Copyright terms: Public domain | W3C validator |