Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > itcoval2 | Structured version Visualization version GIF version |
Description: A function iterated twice. (Contributed by AV, 2-May-2024.) |
Ref | Expression |
---|---|
itcoval2 | ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → ((IterComp‘𝐹)‘2) = (𝐹 ∘ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itcoval 46251 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → (IterComp‘𝐹) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))) | |
2 | 1 | fveq1d 6806 | . . 3 ⊢ (𝐹 ∈ 𝑉 → ((IterComp‘𝐹)‘2) = (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘2)) |
3 | 2 | adantl 483 | . 2 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → ((IterComp‘𝐹)‘2) = (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘2)) |
4 | nn0uz 12670 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
5 | 1nn0 12299 | . . . 4 ⊢ 1 ∈ ℕ0 | |
6 | 5 | a1i 11 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → 1 ∈ ℕ0) |
7 | df-2 12086 | . . 3 ⊢ 2 = (1 + 1) | |
8 | 1 | eqcomd 2742 | . . . . . 6 ⊢ (𝐹 ∈ 𝑉 → seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))) = (IterComp‘𝐹)) |
9 | 8 | fveq1d 6806 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘1) = ((IterComp‘𝐹)‘1)) |
10 | 9 | adantl 483 | . . . 4 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘1) = ((IterComp‘𝐹)‘1)) |
11 | itcoval1 46253 | . . . 4 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → ((IterComp‘𝐹)‘1) = 𝐹) | |
12 | 10, 11 | eqtrd 2776 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘1) = 𝐹) |
13 | eqidd 2737 | . . . 4 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))) | |
14 | 2ne0 12127 | . . . . . . . 8 ⊢ 2 ≠ 0 | |
15 | neeq1 3004 | . . . . . . . 8 ⊢ (𝑖 = 2 → (𝑖 ≠ 0 ↔ 2 ≠ 0)) | |
16 | 14, 15 | mpbiri 258 | . . . . . . 7 ⊢ (𝑖 = 2 → 𝑖 ≠ 0) |
17 | 16 | neneqd 2946 | . . . . . 6 ⊢ (𝑖 = 2 → ¬ 𝑖 = 0) |
18 | 17 | iffalsed 4476 | . . . . 5 ⊢ (𝑖 = 2 → if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹) = 𝐹) |
19 | 18 | adantl 483 | . . . 4 ⊢ (((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑖 = 2) → if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹) = 𝐹) |
20 | 2nn0 12300 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
21 | 20 | a1i 11 | . . . 4 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → 2 ∈ ℕ0) |
22 | simpr 486 | . . . 4 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → 𝐹 ∈ 𝑉) | |
23 | 13, 19, 21, 22 | fvmptd 6914 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → ((𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))‘2) = 𝐹) |
24 | 4, 6, 7, 12, 23 | seqp1d 13788 | . 2 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘2) = (𝐹(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔))𝐹)) |
25 | eqidd 2737 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → (𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)) = (𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔))) | |
26 | coeq2 5780 | . . . . 5 ⊢ (𝑔 = 𝐹 → (𝐹 ∘ 𝑔) = (𝐹 ∘ 𝐹)) | |
27 | 26 | ad2antrl 726 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ (𝑔 = 𝐹 ∧ 𝑗 = 𝐹)) → (𝐹 ∘ 𝑔) = (𝐹 ∘ 𝐹)) |
28 | elex 3455 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
29 | coexg 7808 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹 ∈ 𝑉) → (𝐹 ∘ 𝐹) ∈ V) | |
30 | 29 | anidms 568 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∘ 𝐹) ∈ V) |
31 | 25, 27, 28, 28, 30 | ovmpod 7457 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (𝐹(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔))𝐹) = (𝐹 ∘ 𝐹)) |
32 | 31 | adantl 483 | . 2 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → (𝐹(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔))𝐹) = (𝐹 ∘ 𝐹)) |
33 | 3, 24, 32 | 3eqtrd 2780 | 1 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → ((IterComp‘𝐹)‘2) = (𝐹 ∘ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 Vcvv 3437 ifcif 4465 ↦ cmpt 5164 I cid 5499 dom cdm 5600 ↾ cres 5602 ∘ ccom 5604 Rel wrel 5605 ‘cfv 6458 (class class class)co 7307 ∈ cmpo 7309 0cc0 10921 1c1 10922 2c2 12078 ℕ0cn0 12283 seqcseq 13771 IterCompcitco 46247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9447 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-nn 12024 df-2 12086 df-n0 12284 df-z 12370 df-uz 12633 df-seq 13772 df-itco 46249 |
This theorem is referenced by: itcoval3 46255 |
Copyright terms: Public domain | W3C validator |