| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > itcoval2 | Structured version Visualization version GIF version | ||
| Description: A function iterated twice. (Contributed by AV, 2-May-2024.) |
| Ref | Expression |
|---|---|
| itcoval2 | ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → ((IterComp‘𝐹)‘2) = (𝐹 ∘ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itcoval 48692 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → (IterComp‘𝐹) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))) | |
| 2 | 1 | fveq1d 6824 | . . 3 ⊢ (𝐹 ∈ 𝑉 → ((IterComp‘𝐹)‘2) = (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘2)) |
| 3 | 2 | adantl 481 | . 2 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → ((IterComp‘𝐹)‘2) = (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘2)) |
| 4 | nn0uz 12771 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
| 5 | 1nn0 12394 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 6 | 5 | a1i 11 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → 1 ∈ ℕ0) |
| 7 | df-2 12185 | . . 3 ⊢ 2 = (1 + 1) | |
| 8 | 1 | eqcomd 2737 | . . . . . 6 ⊢ (𝐹 ∈ 𝑉 → seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))) = (IterComp‘𝐹)) |
| 9 | 8 | fveq1d 6824 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘1) = ((IterComp‘𝐹)‘1)) |
| 10 | 9 | adantl 481 | . . . 4 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘1) = ((IterComp‘𝐹)‘1)) |
| 11 | itcoval1 48694 | . . . 4 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → ((IterComp‘𝐹)‘1) = 𝐹) | |
| 12 | 10, 11 | eqtrd 2766 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘1) = 𝐹) |
| 13 | eqidd 2732 | . . . 4 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))) | |
| 14 | 2ne0 12226 | . . . . . . . 8 ⊢ 2 ≠ 0 | |
| 15 | neeq1 2990 | . . . . . . . 8 ⊢ (𝑖 = 2 → (𝑖 ≠ 0 ↔ 2 ≠ 0)) | |
| 16 | 14, 15 | mpbiri 258 | . . . . . . 7 ⊢ (𝑖 = 2 → 𝑖 ≠ 0) |
| 17 | 16 | neneqd 2933 | . . . . . 6 ⊢ (𝑖 = 2 → ¬ 𝑖 = 0) |
| 18 | 17 | iffalsed 4486 | . . . . 5 ⊢ (𝑖 = 2 → if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹) = 𝐹) |
| 19 | 18 | adantl 481 | . . . 4 ⊢ (((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑖 = 2) → if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹) = 𝐹) |
| 20 | 2nn0 12395 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 21 | 20 | a1i 11 | . . . 4 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → 2 ∈ ℕ0) |
| 22 | simpr 484 | . . . 4 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → 𝐹 ∈ 𝑉) | |
| 23 | 13, 19, 21, 22 | fvmptd 6936 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → ((𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))‘2) = 𝐹) |
| 24 | 4, 6, 7, 12, 23 | seqp1d 13922 | . 2 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘2) = (𝐹(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔))𝐹)) |
| 25 | eqidd 2732 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → (𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)) = (𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔))) | |
| 26 | coeq2 5798 | . . . . 5 ⊢ (𝑔 = 𝐹 → (𝐹 ∘ 𝑔) = (𝐹 ∘ 𝐹)) | |
| 27 | 26 | ad2antrl 728 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ (𝑔 = 𝐹 ∧ 𝑗 = 𝐹)) → (𝐹 ∘ 𝑔) = (𝐹 ∘ 𝐹)) |
| 28 | elex 3457 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
| 29 | coexg 7859 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹 ∈ 𝑉) → (𝐹 ∘ 𝐹) ∈ V) | |
| 30 | 29 | anidms 566 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∘ 𝐹) ∈ V) |
| 31 | 25, 27, 28, 28, 30 | ovmpod 7498 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (𝐹(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔))𝐹) = (𝐹 ∘ 𝐹)) |
| 32 | 31 | adantl 481 | . 2 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → (𝐹(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔))𝐹) = (𝐹 ∘ 𝐹)) |
| 33 | 3, 24, 32 | 3eqtrd 2770 | 1 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → ((IterComp‘𝐹)‘2) = (𝐹 ∘ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ifcif 4475 ↦ cmpt 5172 I cid 5510 dom cdm 5616 ↾ cres 5618 ∘ ccom 5620 Rel wrel 5621 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 0cc0 11003 1c1 11004 2c2 12177 ℕ0cn0 12378 seqcseq 13905 IterCompcitco 48688 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-n0 12379 df-z 12466 df-uz 12730 df-seq 13906 df-itco 48690 |
| This theorem is referenced by: itcoval3 48696 |
| Copyright terms: Public domain | W3C validator |