| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > itcoval2 | Structured version Visualization version GIF version | ||
| Description: A function iterated twice. (Contributed by AV, 2-May-2024.) |
| Ref | Expression |
|---|---|
| itcoval2 | ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → ((IterComp‘𝐹)‘2) = (𝐹 ∘ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itcoval 48647 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → (IterComp‘𝐹) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))) | |
| 2 | 1 | fveq1d 6828 | . . 3 ⊢ (𝐹 ∈ 𝑉 → ((IterComp‘𝐹)‘2) = (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘2)) |
| 3 | 2 | adantl 481 | . 2 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → ((IterComp‘𝐹)‘2) = (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘2)) |
| 4 | nn0uz 12795 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
| 5 | 1nn0 12418 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 6 | 5 | a1i 11 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → 1 ∈ ℕ0) |
| 7 | df-2 12209 | . . 3 ⊢ 2 = (1 + 1) | |
| 8 | 1 | eqcomd 2735 | . . . . . 6 ⊢ (𝐹 ∈ 𝑉 → seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))) = (IterComp‘𝐹)) |
| 9 | 8 | fveq1d 6828 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘1) = ((IterComp‘𝐹)‘1)) |
| 10 | 9 | adantl 481 | . . . 4 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘1) = ((IterComp‘𝐹)‘1)) |
| 11 | itcoval1 48649 | . . . 4 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → ((IterComp‘𝐹)‘1) = 𝐹) | |
| 12 | 10, 11 | eqtrd 2764 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘1) = 𝐹) |
| 13 | eqidd 2730 | . . . 4 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))) | |
| 14 | 2ne0 12250 | . . . . . . . 8 ⊢ 2 ≠ 0 | |
| 15 | neeq1 2987 | . . . . . . . 8 ⊢ (𝑖 = 2 → (𝑖 ≠ 0 ↔ 2 ≠ 0)) | |
| 16 | 14, 15 | mpbiri 258 | . . . . . . 7 ⊢ (𝑖 = 2 → 𝑖 ≠ 0) |
| 17 | 16 | neneqd 2930 | . . . . . 6 ⊢ (𝑖 = 2 → ¬ 𝑖 = 0) |
| 18 | 17 | iffalsed 4489 | . . . . 5 ⊢ (𝑖 = 2 → if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹) = 𝐹) |
| 19 | 18 | adantl 481 | . . . 4 ⊢ (((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑖 = 2) → if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹) = 𝐹) |
| 20 | 2nn0 12419 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 21 | 20 | a1i 11 | . . . 4 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → 2 ∈ ℕ0) |
| 22 | simpr 484 | . . . 4 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → 𝐹 ∈ 𝑉) | |
| 23 | 13, 19, 21, 22 | fvmptd 6941 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → ((𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))‘2) = 𝐹) |
| 24 | 4, 6, 7, 12, 23 | seqp1d 13943 | . 2 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘2) = (𝐹(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔))𝐹)) |
| 25 | eqidd 2730 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → (𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)) = (𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔))) | |
| 26 | coeq2 5805 | . . . . 5 ⊢ (𝑔 = 𝐹 → (𝐹 ∘ 𝑔) = (𝐹 ∘ 𝐹)) | |
| 27 | 26 | ad2antrl 728 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ (𝑔 = 𝐹 ∧ 𝑗 = 𝐹)) → (𝐹 ∘ 𝑔) = (𝐹 ∘ 𝐹)) |
| 28 | elex 3459 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
| 29 | coexg 7869 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹 ∈ 𝑉) → (𝐹 ∘ 𝐹) ∈ V) | |
| 30 | 29 | anidms 566 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∘ 𝐹) ∈ V) |
| 31 | 25, 27, 28, 28, 30 | ovmpod 7505 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (𝐹(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔))𝐹) = (𝐹 ∘ 𝐹)) |
| 32 | 31 | adantl 481 | . 2 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → (𝐹(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔))𝐹) = (𝐹 ∘ 𝐹)) |
| 33 | 3, 24, 32 | 3eqtrd 2768 | 1 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → ((IterComp‘𝐹)‘2) = (𝐹 ∘ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3438 ifcif 4478 ↦ cmpt 5176 I cid 5517 dom cdm 5623 ↾ cres 5625 ∘ ccom 5627 Rel wrel 5628 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 0cc0 11028 1c1 11029 2c2 12201 ℕ0cn0 12402 seqcseq 13926 IterCompcitco 48643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-n0 12403 df-z 12490 df-uz 12754 df-seq 13927 df-itco 48645 |
| This theorem is referenced by: itcoval3 48651 |
| Copyright terms: Public domain | W3C validator |