Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > itcoval2 | Structured version Visualization version GIF version |
Description: A function iterated twice. (Contributed by AV, 2-May-2024.) |
Ref | Expression |
---|---|
itcoval2 | ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → ((IterComp‘𝐹)‘2) = (𝐹 ∘ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itcoval 45680 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → (IterComp‘𝐹) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))) | |
2 | 1 | fveq1d 6719 | . . 3 ⊢ (𝐹 ∈ 𝑉 → ((IterComp‘𝐹)‘2) = (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘2)) |
3 | 2 | adantl 485 | . 2 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → ((IterComp‘𝐹)‘2) = (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘2)) |
4 | nn0uz 12476 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
5 | 1nn0 12106 | . . . 4 ⊢ 1 ∈ ℕ0 | |
6 | 5 | a1i 11 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → 1 ∈ ℕ0) |
7 | df-2 11893 | . . 3 ⊢ 2 = (1 + 1) | |
8 | 1 | eqcomd 2743 | . . . . . 6 ⊢ (𝐹 ∈ 𝑉 → seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))) = (IterComp‘𝐹)) |
9 | 8 | fveq1d 6719 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘1) = ((IterComp‘𝐹)‘1)) |
10 | 9 | adantl 485 | . . . 4 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘1) = ((IterComp‘𝐹)‘1)) |
11 | itcoval1 45682 | . . . 4 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → ((IterComp‘𝐹)‘1) = 𝐹) | |
12 | 10, 11 | eqtrd 2777 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘1) = 𝐹) |
13 | eqidd 2738 | . . . 4 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))) | |
14 | 2ne0 11934 | . . . . . . . 8 ⊢ 2 ≠ 0 | |
15 | neeq1 3003 | . . . . . . . 8 ⊢ (𝑖 = 2 → (𝑖 ≠ 0 ↔ 2 ≠ 0)) | |
16 | 14, 15 | mpbiri 261 | . . . . . . 7 ⊢ (𝑖 = 2 → 𝑖 ≠ 0) |
17 | 16 | neneqd 2945 | . . . . . 6 ⊢ (𝑖 = 2 → ¬ 𝑖 = 0) |
18 | 17 | iffalsed 4450 | . . . . 5 ⊢ (𝑖 = 2 → if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹) = 𝐹) |
19 | 18 | adantl 485 | . . . 4 ⊢ (((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑖 = 2) → if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹) = 𝐹) |
20 | 2nn0 12107 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
21 | 20 | a1i 11 | . . . 4 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → 2 ∈ ℕ0) |
22 | simpr 488 | . . . 4 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → 𝐹 ∈ 𝑉) | |
23 | 13, 19, 21, 22 | fvmptd 6825 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → ((𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))‘2) = 𝐹) |
24 | 4, 6, 7, 12, 23 | seqp1d 13591 | . 2 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘2) = (𝐹(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔))𝐹)) |
25 | eqidd 2738 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → (𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)) = (𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔))) | |
26 | coeq2 5727 | . . . . 5 ⊢ (𝑔 = 𝐹 → (𝐹 ∘ 𝑔) = (𝐹 ∘ 𝐹)) | |
27 | 26 | ad2antrl 728 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ (𝑔 = 𝐹 ∧ 𝑗 = 𝐹)) → (𝐹 ∘ 𝑔) = (𝐹 ∘ 𝐹)) |
28 | elex 3426 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
29 | coexg 7707 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹 ∈ 𝑉) → (𝐹 ∘ 𝐹) ∈ V) | |
30 | 29 | anidms 570 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∘ 𝐹) ∈ V) |
31 | 25, 27, 28, 28, 30 | ovmpod 7361 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (𝐹(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔))𝐹) = (𝐹 ∘ 𝐹)) |
32 | 31 | adantl 485 | . 2 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → (𝐹(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔))𝐹) = (𝐹 ∘ 𝐹)) |
33 | 3, 24, 32 | 3eqtrd 2781 | 1 ⊢ ((Rel 𝐹 ∧ 𝐹 ∈ 𝑉) → ((IterComp‘𝐹)‘2) = (𝐹 ∘ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 Vcvv 3408 ifcif 4439 ↦ cmpt 5135 I cid 5454 dom cdm 5551 ↾ cres 5553 ∘ ccom 5555 Rel wrel 5556 ‘cfv 6380 (class class class)co 7213 ∈ cmpo 7215 0cc0 10729 1c1 10730 2c2 11885 ℕ0cn0 12090 seqcseq 13574 IterCompcitco 45676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-n0 12091 df-z 12177 df-uz 12439 df-seq 13575 df-itco 45678 |
This theorem is referenced by: itcoval3 45684 |
Copyright terms: Public domain | W3C validator |