MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwnnlem2 Structured version   Visualization version   GIF version

Theorem vdwnnlem2 16908
Description: Lemma for vdwnn 16910. The set of all "bad" 𝑘 for the theorem is upwards-closed, because a long AP implies a short AP. (Contributed by Mario Carneiro, 13-Sep-2014.)
Hypotheses
Ref Expression
vdwnn.1 (𝜑𝑅 ∈ Fin)
vdwnn.2 (𝜑𝐹:ℕ⟶𝑅)
vdwnn.3 𝑆 = {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})}
Assertion
Ref Expression
vdwnnlem2 ((𝜑𝐵 ∈ (ℤ𝐴)) → (𝐴𝑆𝐵𝑆))
Distinct variable groups:   𝑎,𝑑,𝑘,𝑚,𝐴   𝑎,𝑐,𝑑,𝑚   𝜑,𝑎,𝑐,𝑑   𝑅,𝑎,𝑐,𝑑   𝐵,𝑎,𝑑,𝑘,𝑚   𝐹,𝑎   𝑘,𝑐,𝐹,𝑑,𝑚   𝑆,𝑎,𝑑,𝑘,𝑚
Allowed substitution hints:   𝜑(𝑘,𝑚)   𝐴(𝑐)   𝐵(𝑐)   𝑅(𝑘,𝑚)   𝑆(𝑐)

Proof of Theorem vdwnnlem2
StepHypRef Expression
1 eluzel2 12737 . . . . . . . . . . 11 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℤ)
2 peano2zm 12515 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℤ)
31, 2syl 17 . . . . . . . . . 10 (𝐵 ∈ (ℤ𝐴) → (𝐴 − 1) ∈ ℤ)
4 id 22 . . . . . . . . . . 11 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ (ℤ𝐴))
51zcnd 12578 . . . . . . . . . . . . 13 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℂ)
6 ax-1cn 11064 . . . . . . . . . . . . 13 1 ∈ ℂ
7 npcan 11369 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) + 1) = 𝐴)
85, 6, 7sylancl 586 . . . . . . . . . . . 12 (𝐵 ∈ (ℤ𝐴) → ((𝐴 − 1) + 1) = 𝐴)
98fveq2d 6826 . . . . . . . . . . 11 (𝐵 ∈ (ℤ𝐴) → (ℤ‘((𝐴 − 1) + 1)) = (ℤ𝐴))
104, 9eleqtrrd 2834 . . . . . . . . . 10 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ (ℤ‘((𝐴 − 1) + 1)))
11 eluzp1m1 12758 . . . . . . . . . 10 (((𝐴 − 1) ∈ ℤ ∧ 𝐵 ∈ (ℤ‘((𝐴 − 1) + 1))) → (𝐵 − 1) ∈ (ℤ‘(𝐴 − 1)))
123, 10, 11syl2anc 584 . . . . . . . . 9 (𝐵 ∈ (ℤ𝐴) → (𝐵 − 1) ∈ (ℤ‘(𝐴 − 1)))
1312ad2antlr 727 . . . . . . . 8 (((𝜑𝐵 ∈ (ℤ𝐴)) ∧ 𝐴 ∈ ℕ) → (𝐵 − 1) ∈ (ℤ‘(𝐴 − 1)))
14 fzss2 13464 . . . . . . . 8 ((𝐵 − 1) ∈ (ℤ‘(𝐴 − 1)) → (0...(𝐴 − 1)) ⊆ (0...(𝐵 − 1)))
15 ssralv 3998 . . . . . . . 8 ((0...(𝐴 − 1)) ⊆ (0...(𝐵 − 1)) → (∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) → ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
1613, 14, 153syl 18 . . . . . . 7 (((𝜑𝐵 ∈ (ℤ𝐴)) ∧ 𝐴 ∈ ℕ) → (∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) → ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
1716reximdv 3147 . . . . . 6 (((𝜑𝐵 ∈ (ℤ𝐴)) ∧ 𝐴 ∈ ℕ) → (∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) → ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
1817reximdv 3147 . . . . 5 (((𝜑𝐵 ∈ (ℤ𝐴)) ∧ 𝐴 ∈ ℕ) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
1918con3d 152 . . . 4 (((𝜑𝐵 ∈ (ℤ𝐴)) ∧ 𝐴 ∈ ℕ) → (¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) → ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
20 id 22 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ)
21 simpr 484 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐴)) → 𝐵 ∈ (ℤ𝐴))
22 eluznn 12816 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → 𝐵 ∈ ℕ)
2320, 21, 22syl2anr 597 . . . 4 (((𝜑𝐵 ∈ (ℤ𝐴)) ∧ 𝐴 ∈ ℕ) → 𝐵 ∈ ℕ)
2419, 23jctild 525 . . 3 (((𝜑𝐵 ∈ (ℤ𝐴)) ∧ 𝐴 ∈ ℕ) → (¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) → (𝐵 ∈ ℕ ∧ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))))
2524expimpd 453 . 2 ((𝜑𝐵 ∈ (ℤ𝐴)) → ((𝐴 ∈ ℕ ∧ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})) → (𝐵 ∈ ℕ ∧ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))))
26 oveq1 7353 . . . . . . 7 (𝑘 = 𝐴 → (𝑘 − 1) = (𝐴 − 1))
2726oveq2d 7362 . . . . . 6 (𝑘 = 𝐴 → (0...(𝑘 − 1)) = (0...(𝐴 − 1)))
2827raleqdv 3292 . . . . 5 (𝑘 = 𝐴 → (∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
29282rexbidv 3197 . . . 4 (𝑘 = 𝐴 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
3029notbid 318 . . 3 (𝑘 = 𝐴 → (¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
31 vdwnn.3 . . 3 𝑆 = {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})}
3230, 31elrab2 3645 . 2 (𝐴𝑆 ↔ (𝐴 ∈ ℕ ∧ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
33 oveq1 7353 . . . . . . 7 (𝑘 = 𝐵 → (𝑘 − 1) = (𝐵 − 1))
3433oveq2d 7362 . . . . . 6 (𝑘 = 𝐵 → (0...(𝑘 − 1)) = (0...(𝐵 − 1)))
3534raleqdv 3292 . . . . 5 (𝑘 = 𝐵 → (∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
36352rexbidv 3197 . . . 4 (𝑘 = 𝐵 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
3736notbid 318 . . 3 (𝑘 = 𝐵 → (¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
3837, 31elrab2 3645 . 2 (𝐵𝑆 ↔ (𝐵 ∈ ℕ ∧ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
3925, 32, 383imtr4g 296 1 ((𝜑𝐵 ∈ (ℤ𝐴)) → (𝐴𝑆𝐵𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  {crab 3395  wss 3897  {csn 4573  ccnv 5613  cima 5617  wf 6477  cfv 6481  (class class class)co 7346  Fincfn 8869  cc 11004  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011  cmin 11344  cn 12125  cz 12468  cuz 12732  ...cfz 13407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408
This theorem is referenced by:  vdwnnlem3  16909
  Copyright terms: Public domain W3C validator