MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwnnlem2 Structured version   Visualization version   GIF version

Theorem vdwnnlem2 17034
Description: Lemma for vdwnn 17036. The set of all "bad" 𝑘 for the theorem is upwards-closed, because a long AP implies a short AP. (Contributed by Mario Carneiro, 13-Sep-2014.)
Hypotheses
Ref Expression
vdwnn.1 (𝜑𝑅 ∈ Fin)
vdwnn.2 (𝜑𝐹:ℕ⟶𝑅)
vdwnn.3 𝑆 = {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})}
Assertion
Ref Expression
vdwnnlem2 ((𝜑𝐵 ∈ (ℤ𝐴)) → (𝐴𝑆𝐵𝑆))
Distinct variable groups:   𝑎,𝑑,𝑘,𝑚,𝐴   𝑎,𝑐,𝑑,𝑚   𝜑,𝑎,𝑐,𝑑   𝑅,𝑎,𝑐,𝑑   𝐵,𝑎,𝑑,𝑘,𝑚   𝐹,𝑎   𝑘,𝑐,𝐹,𝑑,𝑚   𝑆,𝑎,𝑑,𝑘,𝑚
Allowed substitution hints:   𝜑(𝑘,𝑚)   𝐴(𝑐)   𝐵(𝑐)   𝑅(𝑘,𝑚)   𝑆(𝑐)

Proof of Theorem vdwnnlem2
StepHypRef Expression
1 eluzel2 12883 . . . . . . . . . . 11 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℤ)
2 peano2zm 12660 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℤ)
31, 2syl 17 . . . . . . . . . 10 (𝐵 ∈ (ℤ𝐴) → (𝐴 − 1) ∈ ℤ)
4 id 22 . . . . . . . . . . 11 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ (ℤ𝐴))
51zcnd 12723 . . . . . . . . . . . . 13 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℂ)
6 ax-1cn 11213 . . . . . . . . . . . . 13 1 ∈ ℂ
7 npcan 11517 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) + 1) = 𝐴)
85, 6, 7sylancl 586 . . . . . . . . . . . 12 (𝐵 ∈ (ℤ𝐴) → ((𝐴 − 1) + 1) = 𝐴)
98fveq2d 6910 . . . . . . . . . . 11 (𝐵 ∈ (ℤ𝐴) → (ℤ‘((𝐴 − 1) + 1)) = (ℤ𝐴))
104, 9eleqtrrd 2844 . . . . . . . . . 10 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ (ℤ‘((𝐴 − 1) + 1)))
11 eluzp1m1 12904 . . . . . . . . . 10 (((𝐴 − 1) ∈ ℤ ∧ 𝐵 ∈ (ℤ‘((𝐴 − 1) + 1))) → (𝐵 − 1) ∈ (ℤ‘(𝐴 − 1)))
123, 10, 11syl2anc 584 . . . . . . . . 9 (𝐵 ∈ (ℤ𝐴) → (𝐵 − 1) ∈ (ℤ‘(𝐴 − 1)))
1312ad2antlr 727 . . . . . . . 8 (((𝜑𝐵 ∈ (ℤ𝐴)) ∧ 𝐴 ∈ ℕ) → (𝐵 − 1) ∈ (ℤ‘(𝐴 − 1)))
14 fzss2 13604 . . . . . . . 8 ((𝐵 − 1) ∈ (ℤ‘(𝐴 − 1)) → (0...(𝐴 − 1)) ⊆ (0...(𝐵 − 1)))
15 ssralv 4052 . . . . . . . 8 ((0...(𝐴 − 1)) ⊆ (0...(𝐵 − 1)) → (∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) → ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
1613, 14, 153syl 18 . . . . . . 7 (((𝜑𝐵 ∈ (ℤ𝐴)) ∧ 𝐴 ∈ ℕ) → (∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) → ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
1716reximdv 3170 . . . . . 6 (((𝜑𝐵 ∈ (ℤ𝐴)) ∧ 𝐴 ∈ ℕ) → (∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) → ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
1817reximdv 3170 . . . . 5 (((𝜑𝐵 ∈ (ℤ𝐴)) ∧ 𝐴 ∈ ℕ) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
1918con3d 152 . . . 4 (((𝜑𝐵 ∈ (ℤ𝐴)) ∧ 𝐴 ∈ ℕ) → (¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) → ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
20 id 22 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ)
21 simpr 484 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐴)) → 𝐵 ∈ (ℤ𝐴))
22 eluznn 12960 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → 𝐵 ∈ ℕ)
2320, 21, 22syl2anr 597 . . . 4 (((𝜑𝐵 ∈ (ℤ𝐴)) ∧ 𝐴 ∈ ℕ) → 𝐵 ∈ ℕ)
2419, 23jctild 525 . . 3 (((𝜑𝐵 ∈ (ℤ𝐴)) ∧ 𝐴 ∈ ℕ) → (¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) → (𝐵 ∈ ℕ ∧ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))))
2524expimpd 453 . 2 ((𝜑𝐵 ∈ (ℤ𝐴)) → ((𝐴 ∈ ℕ ∧ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})) → (𝐵 ∈ ℕ ∧ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))))
26 oveq1 7438 . . . . . . 7 (𝑘 = 𝐴 → (𝑘 − 1) = (𝐴 − 1))
2726oveq2d 7447 . . . . . 6 (𝑘 = 𝐴 → (0...(𝑘 − 1)) = (0...(𝐴 − 1)))
2827raleqdv 3326 . . . . 5 (𝑘 = 𝐴 → (∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
29282rexbidv 3222 . . . 4 (𝑘 = 𝐴 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
3029notbid 318 . . 3 (𝑘 = 𝐴 → (¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
31 vdwnn.3 . . 3 𝑆 = {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})}
3230, 31elrab2 3695 . 2 (𝐴𝑆 ↔ (𝐴 ∈ ℕ ∧ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
33 oveq1 7438 . . . . . . 7 (𝑘 = 𝐵 → (𝑘 − 1) = (𝐵 − 1))
3433oveq2d 7447 . . . . . 6 (𝑘 = 𝐵 → (0...(𝑘 − 1)) = (0...(𝐵 − 1)))
3534raleqdv 3326 . . . . 5 (𝑘 = 𝐵 → (∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
36352rexbidv 3222 . . . 4 (𝑘 = 𝐵 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
3736notbid 318 . . 3 (𝑘 = 𝐵 → (¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
3837, 31elrab2 3695 . 2 (𝐵𝑆 ↔ (𝐵 ∈ ℕ ∧ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
3925, 32, 383imtr4g 296 1 ((𝜑𝐵 ∈ (ℤ𝐴)) → (𝐴𝑆𝐵𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  {crab 3436  wss 3951  {csn 4626  ccnv 5684  cima 5688  wf 6557  cfv 6561  (class class class)co 7431  Fincfn 8985  cc 11153  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  cmin 11492  cn 12266  cz 12613  cuz 12878  ...cfz 13547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548
This theorem is referenced by:  vdwnnlem3  17035
  Copyright terms: Public domain W3C validator