MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwnnlem2 Structured version   Visualization version   GIF version

Theorem vdwnnlem2 16625
Description: Lemma for vdwnn 16627. The set of all "bad" 𝑘 for the theorem is upwards-closed, because a long AP implies a short AP. (Contributed by Mario Carneiro, 13-Sep-2014.)
Hypotheses
Ref Expression
vdwnn.1 (𝜑𝑅 ∈ Fin)
vdwnn.2 (𝜑𝐹:ℕ⟶𝑅)
vdwnn.3 𝑆 = {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})}
Assertion
Ref Expression
vdwnnlem2 ((𝜑𝐵 ∈ (ℤ𝐴)) → (𝐴𝑆𝐵𝑆))
Distinct variable groups:   𝑎,𝑑,𝑘,𝑚,𝐴   𝑎,𝑐,𝑑,𝑚   𝜑,𝑎,𝑐,𝑑   𝑅,𝑎,𝑐,𝑑   𝐵,𝑎,𝑑,𝑘,𝑚   𝐹,𝑎   𝑘,𝑐,𝐹,𝑑,𝑚   𝑆,𝑎,𝑑,𝑘,𝑚
Allowed substitution hints:   𝜑(𝑘,𝑚)   𝐴(𝑐)   𝐵(𝑐)   𝑅(𝑘,𝑚)   𝑆(𝑐)

Proof of Theorem vdwnnlem2
StepHypRef Expression
1 eluzel2 12516 . . . . . . . . . . 11 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℤ)
2 peano2zm 12293 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℤ)
31, 2syl 17 . . . . . . . . . 10 (𝐵 ∈ (ℤ𝐴) → (𝐴 − 1) ∈ ℤ)
4 id 22 . . . . . . . . . . 11 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ (ℤ𝐴))
51zcnd 12356 . . . . . . . . . . . . 13 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℂ)
6 ax-1cn 10860 . . . . . . . . . . . . 13 1 ∈ ℂ
7 npcan 11160 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) + 1) = 𝐴)
85, 6, 7sylancl 585 . . . . . . . . . . . 12 (𝐵 ∈ (ℤ𝐴) → ((𝐴 − 1) + 1) = 𝐴)
98fveq2d 6760 . . . . . . . . . . 11 (𝐵 ∈ (ℤ𝐴) → (ℤ‘((𝐴 − 1) + 1)) = (ℤ𝐴))
104, 9eleqtrrd 2842 . . . . . . . . . 10 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ (ℤ‘((𝐴 − 1) + 1)))
11 eluzp1m1 12537 . . . . . . . . . 10 (((𝐴 − 1) ∈ ℤ ∧ 𝐵 ∈ (ℤ‘((𝐴 − 1) + 1))) → (𝐵 − 1) ∈ (ℤ‘(𝐴 − 1)))
123, 10, 11syl2anc 583 . . . . . . . . 9 (𝐵 ∈ (ℤ𝐴) → (𝐵 − 1) ∈ (ℤ‘(𝐴 − 1)))
1312ad2antlr 723 . . . . . . . 8 (((𝜑𝐵 ∈ (ℤ𝐴)) ∧ 𝐴 ∈ ℕ) → (𝐵 − 1) ∈ (ℤ‘(𝐴 − 1)))
14 fzss2 13225 . . . . . . . 8 ((𝐵 − 1) ∈ (ℤ‘(𝐴 − 1)) → (0...(𝐴 − 1)) ⊆ (0...(𝐵 − 1)))
15 ssralv 3983 . . . . . . . 8 ((0...(𝐴 − 1)) ⊆ (0...(𝐵 − 1)) → (∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) → ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
1613, 14, 153syl 18 . . . . . . 7 (((𝜑𝐵 ∈ (ℤ𝐴)) ∧ 𝐴 ∈ ℕ) → (∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) → ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
1716reximdv 3201 . . . . . 6 (((𝜑𝐵 ∈ (ℤ𝐴)) ∧ 𝐴 ∈ ℕ) → (∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) → ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
1817reximdv 3201 . . . . 5 (((𝜑𝐵 ∈ (ℤ𝐴)) ∧ 𝐴 ∈ ℕ) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
1918con3d 152 . . . 4 (((𝜑𝐵 ∈ (ℤ𝐴)) ∧ 𝐴 ∈ ℕ) → (¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) → ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
20 id 22 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ)
21 simpr 484 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐴)) → 𝐵 ∈ (ℤ𝐴))
22 eluznn 12587 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → 𝐵 ∈ ℕ)
2320, 21, 22syl2anr 596 . . . 4 (((𝜑𝐵 ∈ (ℤ𝐴)) ∧ 𝐴 ∈ ℕ) → 𝐵 ∈ ℕ)
2419, 23jctild 525 . . 3 (((𝜑𝐵 ∈ (ℤ𝐴)) ∧ 𝐴 ∈ ℕ) → (¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) → (𝐵 ∈ ℕ ∧ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))))
2524expimpd 453 . 2 ((𝜑𝐵 ∈ (ℤ𝐴)) → ((𝐴 ∈ ℕ ∧ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})) → (𝐵 ∈ ℕ ∧ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))))
26 oveq1 7262 . . . . . . 7 (𝑘 = 𝐴 → (𝑘 − 1) = (𝐴 − 1))
2726oveq2d 7271 . . . . . 6 (𝑘 = 𝐴 → (0...(𝑘 − 1)) = (0...(𝐴 − 1)))
2827raleqdv 3339 . . . . 5 (𝑘 = 𝐴 → (∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
29282rexbidv 3228 . . . 4 (𝑘 = 𝐴 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
3029notbid 317 . . 3 (𝑘 = 𝐴 → (¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
31 vdwnn.3 . . 3 𝑆 = {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})}
3230, 31elrab2 3620 . 2 (𝐴𝑆 ↔ (𝐴 ∈ ℕ ∧ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
33 oveq1 7262 . . . . . . 7 (𝑘 = 𝐵 → (𝑘 − 1) = (𝐵 − 1))
3433oveq2d 7271 . . . . . 6 (𝑘 = 𝐵 → (0...(𝑘 − 1)) = (0...(𝐵 − 1)))
3534raleqdv 3339 . . . . 5 (𝑘 = 𝐵 → (∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
36352rexbidv 3228 . . . 4 (𝑘 = 𝐵 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
3736notbid 317 . . 3 (𝑘 = 𝐵 → (¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
3837, 31elrab2 3620 . 2 (𝐵𝑆 ↔ (𝐵 ∈ ℕ ∧ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
3925, 32, 383imtr4g 295 1 ((𝜑𝐵 ∈ (ℤ𝐴)) → (𝐴𝑆𝐵𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  wss 3883  {csn 4558  ccnv 5579  cima 5583  wf 6414  cfv 6418  (class class class)co 7255  Fincfn 8691  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135  cn 11903  cz 12249  cuz 12511  ...cfz 13168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169
This theorem is referenced by:  vdwnnlem3  16626
  Copyright terms: Public domain W3C validator