MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwnnlem2 Structured version   Visualization version   GIF version

Theorem vdwnnlem2 16908
Description: Lemma for vdwnn 16910. The set of all "bad" 𝑘 for the theorem is upwards-closed, because a long AP implies a short AP. (Contributed by Mario Carneiro, 13-Sep-2014.)
Hypotheses
Ref Expression
vdwnn.1 (𝜑𝑅 ∈ Fin)
vdwnn.2 (𝜑𝐹:ℕ⟶𝑅)
vdwnn.3 𝑆 = {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})}
Assertion
Ref Expression
vdwnnlem2 ((𝜑𝐵 ∈ (ℤ𝐴)) → (𝐴𝑆𝐵𝑆))
Distinct variable groups:   𝑎,𝑑,𝑘,𝑚,𝐴   𝑎,𝑐,𝑑,𝑚   𝜑,𝑎,𝑐,𝑑   𝑅,𝑎,𝑐,𝑑   𝐵,𝑎,𝑑,𝑘,𝑚   𝐹,𝑎   𝑘,𝑐,𝐹,𝑑,𝑚   𝑆,𝑎,𝑑,𝑘,𝑚
Allowed substitution hints:   𝜑(𝑘,𝑚)   𝐴(𝑐)   𝐵(𝑐)   𝑅(𝑘,𝑚)   𝑆(𝑐)

Proof of Theorem vdwnnlem2
StepHypRef Expression
1 eluzel2 12740 . . . . . . . . . . 11 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℤ)
2 peano2zm 12518 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℤ)
31, 2syl 17 . . . . . . . . . 10 (𝐵 ∈ (ℤ𝐴) → (𝐴 − 1) ∈ ℤ)
4 id 22 . . . . . . . . . . 11 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ (ℤ𝐴))
51zcnd 12581 . . . . . . . . . . . . 13 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℂ)
6 ax-1cn 11067 . . . . . . . . . . . . 13 1 ∈ ℂ
7 npcan 11372 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) + 1) = 𝐴)
85, 6, 7sylancl 586 . . . . . . . . . . . 12 (𝐵 ∈ (ℤ𝐴) → ((𝐴 − 1) + 1) = 𝐴)
98fveq2d 6826 . . . . . . . . . . 11 (𝐵 ∈ (ℤ𝐴) → (ℤ‘((𝐴 − 1) + 1)) = (ℤ𝐴))
104, 9eleqtrrd 2831 . . . . . . . . . 10 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ (ℤ‘((𝐴 − 1) + 1)))
11 eluzp1m1 12761 . . . . . . . . . 10 (((𝐴 − 1) ∈ ℤ ∧ 𝐵 ∈ (ℤ‘((𝐴 − 1) + 1))) → (𝐵 − 1) ∈ (ℤ‘(𝐴 − 1)))
123, 10, 11syl2anc 584 . . . . . . . . 9 (𝐵 ∈ (ℤ𝐴) → (𝐵 − 1) ∈ (ℤ‘(𝐴 − 1)))
1312ad2antlr 727 . . . . . . . 8 (((𝜑𝐵 ∈ (ℤ𝐴)) ∧ 𝐴 ∈ ℕ) → (𝐵 − 1) ∈ (ℤ‘(𝐴 − 1)))
14 fzss2 13467 . . . . . . . 8 ((𝐵 − 1) ∈ (ℤ‘(𝐴 − 1)) → (0...(𝐴 − 1)) ⊆ (0...(𝐵 − 1)))
15 ssralv 4004 . . . . . . . 8 ((0...(𝐴 − 1)) ⊆ (0...(𝐵 − 1)) → (∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) → ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
1613, 14, 153syl 18 . . . . . . 7 (((𝜑𝐵 ∈ (ℤ𝐴)) ∧ 𝐴 ∈ ℕ) → (∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) → ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
1716reximdv 3144 . . . . . 6 (((𝜑𝐵 ∈ (ℤ𝐴)) ∧ 𝐴 ∈ ℕ) → (∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) → ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
1817reximdv 3144 . . . . 5 (((𝜑𝐵 ∈ (ℤ𝐴)) ∧ 𝐴 ∈ ℕ) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
1918con3d 152 . . . 4 (((𝜑𝐵 ∈ (ℤ𝐴)) ∧ 𝐴 ∈ ℕ) → (¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) → ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
20 id 22 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ)
21 simpr 484 . . . . 5 ((𝜑𝐵 ∈ (ℤ𝐴)) → 𝐵 ∈ (ℤ𝐴))
22 eluznn 12819 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → 𝐵 ∈ ℕ)
2320, 21, 22syl2anr 597 . . . 4 (((𝜑𝐵 ∈ (ℤ𝐴)) ∧ 𝐴 ∈ ℕ) → 𝐵 ∈ ℕ)
2419, 23jctild 525 . . 3 (((𝜑𝐵 ∈ (ℤ𝐴)) ∧ 𝐴 ∈ ℕ) → (¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) → (𝐵 ∈ ℕ ∧ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))))
2524expimpd 453 . 2 ((𝜑𝐵 ∈ (ℤ𝐴)) → ((𝐴 ∈ ℕ ∧ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})) → (𝐵 ∈ ℕ ∧ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))))
26 oveq1 7356 . . . . . . 7 (𝑘 = 𝐴 → (𝑘 − 1) = (𝐴 − 1))
2726oveq2d 7365 . . . . . 6 (𝑘 = 𝐴 → (0...(𝑘 − 1)) = (0...(𝐴 − 1)))
2827raleqdv 3289 . . . . 5 (𝑘 = 𝐴 → (∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
29282rexbidv 3194 . . . 4 (𝑘 = 𝐴 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
3029notbid 318 . . 3 (𝑘 = 𝐴 → (¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
31 vdwnn.3 . . 3 𝑆 = {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})}
3230, 31elrab2 3651 . 2 (𝐴𝑆 ↔ (𝐴 ∈ ℕ ∧ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐴 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
33 oveq1 7356 . . . . . . 7 (𝑘 = 𝐵 → (𝑘 − 1) = (𝐵 − 1))
3433oveq2d 7365 . . . . . 6 (𝑘 = 𝐵 → (0...(𝑘 − 1)) = (0...(𝐵 − 1)))
3534raleqdv 3289 . . . . 5 (𝑘 = 𝐵 → (∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
36352rexbidv 3194 . . . 4 (𝑘 = 𝐵 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
3736notbid 318 . . 3 (𝑘 = 𝐵 → (¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
3837, 31elrab2 3651 . 2 (𝐵𝑆 ↔ (𝐵 ∈ ℕ ∧ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐵 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
3925, 32, 383imtr4g 296 1 ((𝜑𝐵 ∈ (ℤ𝐴)) → (𝐴𝑆𝐵𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3394  wss 3903  {csn 4577  ccnv 5618  cima 5622  wf 6478  cfv 6482  (class class class)co 7349  Fincfn 8872  cc 11007  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  cmin 11347  cn 12128  cz 12471  cuz 12735  ...cfz 13410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411
This theorem is referenced by:  vdwnnlem3  16909
  Copyright terms: Public domain W3C validator