Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcm2un | Structured version Visualization version GIF version |
Description: Least common multiple of natural numbers up to 2 equals 2. (Contributed by metakunt, 25-Apr-2024.) |
Ref | Expression |
---|---|
lcm2un | ⊢ (lcm‘(1...2)) = 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 11903 | . . . 4 ⊢ 2 ∈ ℕ | |
2 | id 22 | . . . . 5 ⊢ (2 ∈ ℕ → 2 ∈ ℕ) | |
3 | 2 | lcmfunnnd 39754 | . . . 4 ⊢ (2 ∈ ℕ → (lcm‘(1...2)) = ((lcm‘(1...(2 − 1))) lcm 2)) |
4 | 1, 3 | ax-mp 5 | . . 3 ⊢ (lcm‘(1...2)) = ((lcm‘(1...(2 − 1))) lcm 2) |
5 | 2m1e1 11956 | . . . . . 6 ⊢ (2 − 1) = 1 | |
6 | 5 | oveq2i 7224 | . . . . 5 ⊢ (1...(2 − 1)) = (1...1) |
7 | 6 | fveq2i 6720 | . . . 4 ⊢ (lcm‘(1...(2 − 1))) = (lcm‘(1...1)) |
8 | 7 | oveq1i 7223 | . . 3 ⊢ ((lcm‘(1...(2 − 1))) lcm 2) = ((lcm‘(1...1)) lcm 2) |
9 | 4, 8 | eqtri 2765 | . 2 ⊢ (lcm‘(1...2)) = ((lcm‘(1...1)) lcm 2) |
10 | lcm1un 39755 | . . . 4 ⊢ (lcm‘(1...1)) = 1 | |
11 | 10 | oveq1i 7223 | . . 3 ⊢ ((lcm‘(1...1)) lcm 2) = (1 lcm 2) |
12 | 1z 12207 | . . . . 5 ⊢ 1 ∈ ℤ | |
13 | 2z 12209 | . . . . 5 ⊢ 2 ∈ ℤ | |
14 | lcmcom 16150 | . . . . 5 ⊢ ((1 ∈ ℤ ∧ 2 ∈ ℤ) → (1 lcm 2) = (2 lcm 1)) | |
15 | 12, 13, 14 | mp2an 692 | . . . 4 ⊢ (1 lcm 2) = (2 lcm 1) |
16 | lcm1 16167 | . . . . . 6 ⊢ (2 ∈ ℤ → (2 lcm 1) = (abs‘2)) | |
17 | 13, 16 | ax-mp 5 | . . . . 5 ⊢ (2 lcm 1) = (abs‘2) |
18 | 2re 11904 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
19 | 0le2 11932 | . . . . . . 7 ⊢ 0 ≤ 2 | |
20 | 18, 19 | pm3.2i 474 | . . . . . 6 ⊢ (2 ∈ ℝ ∧ 0 ≤ 2) |
21 | absid 14860 | . . . . . 6 ⊢ ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2) | |
22 | 20, 21 | ax-mp 5 | . . . . 5 ⊢ (abs‘2) = 2 |
23 | 17, 22 | eqtri 2765 | . . . 4 ⊢ (2 lcm 1) = 2 |
24 | 15, 23 | eqtri 2765 | . . 3 ⊢ (1 lcm 2) = 2 |
25 | 11, 24 | eqtri 2765 | . 2 ⊢ ((lcm‘(1...1)) lcm 2) = 2 |
26 | 9, 25 | eqtri 2765 | 1 ⊢ (lcm‘(1...2)) = 2 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1543 ∈ wcel 2110 class class class wbr 5053 ‘cfv 6380 (class class class)co 7213 ℝcr 10728 0cc0 10729 1c1 10730 ≤ cle 10868 − cmin 11062 ℕcn 11830 2c2 11885 ℤcz 12176 ...cfz 13095 abscabs 14797 lcm clcm 16145 lcmclcmf 16146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-sup 9058 df-inf 9059 df-oi 9126 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-n0 12091 df-z 12177 df-uz 12439 df-rp 12587 df-fz 13096 df-fzo 13239 df-fl 13367 df-mod 13443 df-seq 13575 df-exp 13636 df-hash 13897 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-clim 15049 df-prod 15468 df-dvds 15816 df-gcd 16054 df-lcm 16147 df-lcmf 16148 |
This theorem is referenced by: lcm3un 39757 |
Copyright terms: Public domain | W3C validator |