![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcm2un | Structured version Visualization version GIF version |
Description: Least common multiple of natural numbers up to 2 equals 2. (Contributed by metakunt, 25-Apr-2024.) |
Ref | Expression |
---|---|
lcm2un | ⊢ (lcm‘(1...2)) = 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 12284 | . . . 4 ⊢ 2 ∈ ℕ | |
2 | id 22 | . . . . 5 ⊢ (2 ∈ ℕ → 2 ∈ ℕ) | |
3 | 2 | lcmfunnnd 40872 | . . . 4 ⊢ (2 ∈ ℕ → (lcm‘(1...2)) = ((lcm‘(1...(2 − 1))) lcm 2)) |
4 | 1, 3 | ax-mp 5 | . . 3 ⊢ (lcm‘(1...2)) = ((lcm‘(1...(2 − 1))) lcm 2) |
5 | 2m1e1 12337 | . . . . . 6 ⊢ (2 − 1) = 1 | |
6 | 5 | oveq2i 7419 | . . . . 5 ⊢ (1...(2 − 1)) = (1...1) |
7 | 6 | fveq2i 6894 | . . . 4 ⊢ (lcm‘(1...(2 − 1))) = (lcm‘(1...1)) |
8 | 7 | oveq1i 7418 | . . 3 ⊢ ((lcm‘(1...(2 − 1))) lcm 2) = ((lcm‘(1...1)) lcm 2) |
9 | 4, 8 | eqtri 2760 | . 2 ⊢ (lcm‘(1...2)) = ((lcm‘(1...1)) lcm 2) |
10 | lcm1un 40873 | . . . 4 ⊢ (lcm‘(1...1)) = 1 | |
11 | 10 | oveq1i 7418 | . . 3 ⊢ ((lcm‘(1...1)) lcm 2) = (1 lcm 2) |
12 | 1z 12591 | . . . . 5 ⊢ 1 ∈ ℤ | |
13 | 2z 12593 | . . . . 5 ⊢ 2 ∈ ℤ | |
14 | lcmcom 16529 | . . . . 5 ⊢ ((1 ∈ ℤ ∧ 2 ∈ ℤ) → (1 lcm 2) = (2 lcm 1)) | |
15 | 12, 13, 14 | mp2an 690 | . . . 4 ⊢ (1 lcm 2) = (2 lcm 1) |
16 | lcm1 16546 | . . . . . 6 ⊢ (2 ∈ ℤ → (2 lcm 1) = (abs‘2)) | |
17 | 13, 16 | ax-mp 5 | . . . . 5 ⊢ (2 lcm 1) = (abs‘2) |
18 | 2re 12285 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
19 | 0le2 12313 | . . . . . . 7 ⊢ 0 ≤ 2 | |
20 | 18, 19 | pm3.2i 471 | . . . . . 6 ⊢ (2 ∈ ℝ ∧ 0 ≤ 2) |
21 | absid 15242 | . . . . . 6 ⊢ ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2) | |
22 | 20, 21 | ax-mp 5 | . . . . 5 ⊢ (abs‘2) = 2 |
23 | 17, 22 | eqtri 2760 | . . . 4 ⊢ (2 lcm 1) = 2 |
24 | 15, 23 | eqtri 2760 | . . 3 ⊢ (1 lcm 2) = 2 |
25 | 11, 24 | eqtri 2760 | . 2 ⊢ ((lcm‘(1...1)) lcm 2) = 2 |
26 | 9, 25 | eqtri 2760 | 1 ⊢ (lcm‘(1...2)) = 2 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1541 ∈ wcel 2106 class class class wbr 5148 ‘cfv 6543 (class class class)co 7408 ℝcr 11108 0cc0 11109 1c1 11110 ≤ cle 11248 − cmin 11443 ℕcn 12211 2c2 12266 ℤcz 12557 ...cfz 13483 abscabs 15180 lcm clcm 16524 lcmclcmf 16525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-oi 9504 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-fz 13484 df-fzo 13627 df-fl 13756 df-mod 13834 df-seq 13966 df-exp 14027 df-hash 14290 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-clim 15431 df-prod 15849 df-dvds 16197 df-gcd 16435 df-lcm 16526 df-lcmf 16527 |
This theorem is referenced by: lcm3un 40875 |
Copyright terms: Public domain | W3C validator |