| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcm2un | Structured version Visualization version GIF version | ||
| Description: Least common multiple of natural numbers up to 2 equals 2. (Contributed by metakunt, 25-Apr-2024.) |
| Ref | Expression |
|---|---|
| lcm2un | ⊢ (lcm‘(1...2)) = 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn 12305 | . . . 4 ⊢ 2 ∈ ℕ | |
| 2 | id 22 | . . . . 5 ⊢ (2 ∈ ℕ → 2 ∈ ℕ) | |
| 3 | 2 | lcmfunnnd 41947 | . . . 4 ⊢ (2 ∈ ℕ → (lcm‘(1...2)) = ((lcm‘(1...(2 − 1))) lcm 2)) |
| 4 | 1, 3 | ax-mp 5 | . . 3 ⊢ (lcm‘(1...2)) = ((lcm‘(1...(2 − 1))) lcm 2) |
| 5 | 2m1e1 12358 | . . . . . 6 ⊢ (2 − 1) = 1 | |
| 6 | 5 | oveq2i 7410 | . . . . 5 ⊢ (1...(2 − 1)) = (1...1) |
| 7 | 6 | fveq2i 6875 | . . . 4 ⊢ (lcm‘(1...(2 − 1))) = (lcm‘(1...1)) |
| 8 | 7 | oveq1i 7409 | . . 3 ⊢ ((lcm‘(1...(2 − 1))) lcm 2) = ((lcm‘(1...1)) lcm 2) |
| 9 | 4, 8 | eqtri 2757 | . 2 ⊢ (lcm‘(1...2)) = ((lcm‘(1...1)) lcm 2) |
| 10 | lcm1un 41948 | . . . 4 ⊢ (lcm‘(1...1)) = 1 | |
| 11 | 10 | oveq1i 7409 | . . 3 ⊢ ((lcm‘(1...1)) lcm 2) = (1 lcm 2) |
| 12 | 1z 12614 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 13 | 2z 12616 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 14 | lcmcom 16597 | . . . . 5 ⊢ ((1 ∈ ℤ ∧ 2 ∈ ℤ) → (1 lcm 2) = (2 lcm 1)) | |
| 15 | 12, 13, 14 | mp2an 692 | . . . 4 ⊢ (1 lcm 2) = (2 lcm 1) |
| 16 | lcm1 16614 | . . . . . 6 ⊢ (2 ∈ ℤ → (2 lcm 1) = (abs‘2)) | |
| 17 | 13, 16 | ax-mp 5 | . . . . 5 ⊢ (2 lcm 1) = (abs‘2) |
| 18 | 2re 12306 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
| 19 | 0le2 12334 | . . . . . . 7 ⊢ 0 ≤ 2 | |
| 20 | 18, 19 | pm3.2i 470 | . . . . . 6 ⊢ (2 ∈ ℝ ∧ 0 ≤ 2) |
| 21 | absid 15302 | . . . . . 6 ⊢ ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2) | |
| 22 | 20, 21 | ax-mp 5 | . . . . 5 ⊢ (abs‘2) = 2 |
| 23 | 17, 22 | eqtri 2757 | . . . 4 ⊢ (2 lcm 1) = 2 |
| 24 | 15, 23 | eqtri 2757 | . . 3 ⊢ (1 lcm 2) = 2 |
| 25 | 11, 24 | eqtri 2757 | . 2 ⊢ ((lcm‘(1...1)) lcm 2) = 2 |
| 26 | 9, 25 | eqtri 2757 | 1 ⊢ (lcm‘(1...2)) = 2 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2107 class class class wbr 5116 ‘cfv 6527 (class class class)co 7399 ℝcr 11120 0cc0 11121 1c1 11122 ≤ cle 11262 − cmin 11458 ℕcn 12232 2c2 12287 ℤcz 12580 ...cfz 13513 abscabs 15240 lcm clcm 16592 lcmclcmf 16593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-inf2 9647 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 ax-pre-sup 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-int 4920 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-se 5604 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-isom 6536 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-1st 7982 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-2o 8475 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-sup 9448 df-inf 9449 df-oi 9516 df-card 9945 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-div 11887 df-nn 12233 df-2 12295 df-3 12296 df-n0 12494 df-z 12581 df-uz 12845 df-rp 13001 df-fz 13514 df-fzo 13661 df-fl 13798 df-mod 13876 df-seq 14009 df-exp 14069 df-hash 14337 df-cj 15105 df-re 15106 df-im 15107 df-sqrt 15241 df-abs 15242 df-clim 15491 df-prod 15907 df-dvds 16258 df-gcd 16499 df-lcm 16594 df-lcmf 16595 |
| This theorem is referenced by: lcm3un 41950 |
| Copyright terms: Public domain | W3C validator |