| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcm2un | Structured version Visualization version GIF version | ||
| Description: Least common multiple of natural numbers up to 2 equals 2. (Contributed by metakunt, 25-Apr-2024.) |
| Ref | Expression |
|---|---|
| lcm2un | ⊢ (lcm‘(1...2)) = 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn 12322 | . . . 4 ⊢ 2 ∈ ℕ | |
| 2 | id 22 | . . . . 5 ⊢ (2 ∈ ℕ → 2 ∈ ℕ) | |
| 3 | 2 | lcmfunnnd 41954 | . . . 4 ⊢ (2 ∈ ℕ → (lcm‘(1...2)) = ((lcm‘(1...(2 − 1))) lcm 2)) |
| 4 | 1, 3 | ax-mp 5 | . . 3 ⊢ (lcm‘(1...2)) = ((lcm‘(1...(2 − 1))) lcm 2) |
| 5 | 2m1e1 12375 | . . . . . 6 ⊢ (2 − 1) = 1 | |
| 6 | 5 | oveq2i 7425 | . . . . 5 ⊢ (1...(2 − 1)) = (1...1) |
| 7 | 6 | fveq2i 6890 | . . . 4 ⊢ (lcm‘(1...(2 − 1))) = (lcm‘(1...1)) |
| 8 | 7 | oveq1i 7424 | . . 3 ⊢ ((lcm‘(1...(2 − 1))) lcm 2) = ((lcm‘(1...1)) lcm 2) |
| 9 | 4, 8 | eqtri 2757 | . 2 ⊢ (lcm‘(1...2)) = ((lcm‘(1...1)) lcm 2) |
| 10 | lcm1un 41955 | . . . 4 ⊢ (lcm‘(1...1)) = 1 | |
| 11 | 10 | oveq1i 7424 | . . 3 ⊢ ((lcm‘(1...1)) lcm 2) = (1 lcm 2) |
| 12 | 1z 12631 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 13 | 2z 12633 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 14 | lcmcom 16613 | . . . . 5 ⊢ ((1 ∈ ℤ ∧ 2 ∈ ℤ) → (1 lcm 2) = (2 lcm 1)) | |
| 15 | 12, 13, 14 | mp2an 692 | . . . 4 ⊢ (1 lcm 2) = (2 lcm 1) |
| 16 | lcm1 16630 | . . . . . 6 ⊢ (2 ∈ ℤ → (2 lcm 1) = (abs‘2)) | |
| 17 | 13, 16 | ax-mp 5 | . . . . 5 ⊢ (2 lcm 1) = (abs‘2) |
| 18 | 2re 12323 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
| 19 | 0le2 12351 | . . . . . . 7 ⊢ 0 ≤ 2 | |
| 20 | 18, 19 | pm3.2i 470 | . . . . . 6 ⊢ (2 ∈ ℝ ∧ 0 ≤ 2) |
| 21 | absid 15318 | . . . . . 6 ⊢ ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2) | |
| 22 | 20, 21 | ax-mp 5 | . . . . 5 ⊢ (abs‘2) = 2 |
| 23 | 17, 22 | eqtri 2757 | . . . 4 ⊢ (2 lcm 1) = 2 |
| 24 | 15, 23 | eqtri 2757 | . . 3 ⊢ (1 lcm 2) = 2 |
| 25 | 11, 24 | eqtri 2757 | . 2 ⊢ ((lcm‘(1...1)) lcm 2) = 2 |
| 26 | 9, 25 | eqtri 2757 | 1 ⊢ (lcm‘(1...2)) = 2 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2107 class class class wbr 5125 ‘cfv 6542 (class class class)co 7414 ℝcr 11137 0cc0 11138 1c1 11139 ≤ cle 11279 − cmin 11475 ℕcn 12249 2c2 12304 ℤcz 12597 ...cfz 13530 abscabs 15256 lcm clcm 16608 lcmclcmf 16609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-inf2 9664 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-se 5620 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-2o 8490 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-sup 9465 df-inf 9466 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-div 11904 df-nn 12250 df-2 12312 df-3 12313 df-n0 12511 df-z 12598 df-uz 12862 df-rp 13018 df-fz 13531 df-fzo 13678 df-fl 13815 df-mod 13893 df-seq 14026 df-exp 14086 df-hash 14353 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-clim 15507 df-prod 15923 df-dvds 16274 df-gcd 16515 df-lcm 16610 df-lcmf 16611 |
| This theorem is referenced by: lcm3un 41957 |
| Copyright terms: Public domain | W3C validator |