| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcm2un | Structured version Visualization version GIF version | ||
| Description: Least common multiple of natural numbers up to 2 equals 2. (Contributed by metakunt, 25-Apr-2024.) |
| Ref | Expression |
|---|---|
| lcm2un | ⊢ (lcm‘(1...2)) = 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn 12270 | . . . 4 ⊢ 2 ∈ ℕ | |
| 2 | id 22 | . . . . 5 ⊢ (2 ∈ ℕ → 2 ∈ ℕ) | |
| 3 | 2 | lcmfunnnd 41992 | . . . 4 ⊢ (2 ∈ ℕ → (lcm‘(1...2)) = ((lcm‘(1...(2 − 1))) lcm 2)) |
| 4 | 1, 3 | ax-mp 5 | . . 3 ⊢ (lcm‘(1...2)) = ((lcm‘(1...(2 − 1))) lcm 2) |
| 5 | 2m1e1 12323 | . . . . . 6 ⊢ (2 − 1) = 1 | |
| 6 | 5 | oveq2i 7405 | . . . . 5 ⊢ (1...(2 − 1)) = (1...1) |
| 7 | 6 | fveq2i 6868 | . . . 4 ⊢ (lcm‘(1...(2 − 1))) = (lcm‘(1...1)) |
| 8 | 7 | oveq1i 7404 | . . 3 ⊢ ((lcm‘(1...(2 − 1))) lcm 2) = ((lcm‘(1...1)) lcm 2) |
| 9 | 4, 8 | eqtri 2753 | . 2 ⊢ (lcm‘(1...2)) = ((lcm‘(1...1)) lcm 2) |
| 10 | lcm1un 41993 | . . . 4 ⊢ (lcm‘(1...1)) = 1 | |
| 11 | 10 | oveq1i 7404 | . . 3 ⊢ ((lcm‘(1...1)) lcm 2) = (1 lcm 2) |
| 12 | 1z 12579 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 13 | 2z 12581 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 14 | lcmcom 16569 | . . . . 5 ⊢ ((1 ∈ ℤ ∧ 2 ∈ ℤ) → (1 lcm 2) = (2 lcm 1)) | |
| 15 | 12, 13, 14 | mp2an 692 | . . . 4 ⊢ (1 lcm 2) = (2 lcm 1) |
| 16 | lcm1 16586 | . . . . . 6 ⊢ (2 ∈ ℤ → (2 lcm 1) = (abs‘2)) | |
| 17 | 13, 16 | ax-mp 5 | . . . . 5 ⊢ (2 lcm 1) = (abs‘2) |
| 18 | 2re 12271 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
| 19 | 0le2 12299 | . . . . . . 7 ⊢ 0 ≤ 2 | |
| 20 | 18, 19 | pm3.2i 470 | . . . . . 6 ⊢ (2 ∈ ℝ ∧ 0 ≤ 2) |
| 21 | absid 15272 | . . . . . 6 ⊢ ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2) | |
| 22 | 20, 21 | ax-mp 5 | . . . . 5 ⊢ (abs‘2) = 2 |
| 23 | 17, 22 | eqtri 2753 | . . . 4 ⊢ (2 lcm 1) = 2 |
| 24 | 15, 23 | eqtri 2753 | . . 3 ⊢ (1 lcm 2) = 2 |
| 25 | 11, 24 | eqtri 2753 | . 2 ⊢ ((lcm‘(1...1)) lcm 2) = 2 |
| 26 | 9, 25 | eqtri 2753 | 1 ⊢ (lcm‘(1...2)) = 2 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5115 ‘cfv 6519 (class class class)co 7394 ℝcr 11085 0cc0 11086 1c1 11087 ≤ cle 11227 − cmin 11423 ℕcn 12197 2c2 12252 ℤcz 12545 ...cfz 13481 abscabs 15210 lcm clcm 16564 lcmclcmf 16565 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-inf2 9612 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-se 5600 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-isom 6528 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-2o 8444 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-sup 9411 df-inf 9412 df-oi 9481 df-card 9910 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-2 12260 df-3 12261 df-n0 12459 df-z 12546 df-uz 12810 df-rp 12966 df-fz 13482 df-fzo 13629 df-fl 13766 df-mod 13844 df-seq 13977 df-exp 14037 df-hash 14306 df-cj 15075 df-re 15076 df-im 15077 df-sqrt 15211 df-abs 15212 df-clim 15461 df-prod 15877 df-dvds 16230 df-gcd 16471 df-lcm 16566 df-lcmf 16567 |
| This theorem is referenced by: lcm3un 41995 |
| Copyright terms: Public domain | W3C validator |