![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcm3un | Structured version Visualization version GIF version |
Description: Least common multiple of natural numbers up to 3 equals 6. (Contributed by metakunt, 25-Apr-2024.) |
Ref | Expression |
---|---|
lcm3un | ⊢ (lcm‘(1...3)) = 6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3nn 12291 | . . 3 ⊢ 3 ∈ ℕ | |
2 | id 22 | . . . 4 ⊢ (3 ∈ ℕ → 3 ∈ ℕ) | |
3 | 2 | lcmfunnnd 40877 | . . 3 ⊢ (3 ∈ ℕ → (lcm‘(1...3)) = ((lcm‘(1...(3 − 1))) lcm 3)) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ (lcm‘(1...3)) = ((lcm‘(1...(3 − 1))) lcm 3) |
5 | 3m1e2 12340 | . . . . . . 7 ⊢ (3 − 1) = 2 | |
6 | 5 | oveq2i 7420 | . . . . . 6 ⊢ (1...(3 − 1)) = (1...2) |
7 | 6 | fveq2i 6895 | . . . . 5 ⊢ (lcm‘(1...(3 − 1))) = (lcm‘(1...2)) |
8 | lcm2un 40879 | . . . . 5 ⊢ (lcm‘(1...2)) = 2 | |
9 | 7, 8 | eqtri 2761 | . . . 4 ⊢ (lcm‘(1...(3 − 1))) = 2 |
10 | 9 | oveq1i 7419 | . . 3 ⊢ ((lcm‘(1...(3 − 1))) lcm 3) = (2 lcm 3) |
11 | 2z 12594 | . . . . . 6 ⊢ 2 ∈ ℤ | |
12 | 3z 12595 | . . . . . 6 ⊢ 3 ∈ ℤ | |
13 | 11, 12 | pm3.2i 472 | . . . . 5 ⊢ (2 ∈ ℤ ∧ 3 ∈ ℤ) |
14 | lcmcom 16530 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 3 ∈ ℤ) → (2 lcm 3) = (3 lcm 2)) | |
15 | 13, 14 | ax-mp 5 | . . . 4 ⊢ (2 lcm 3) = (3 lcm 2) |
16 | 3lcm2e6 16668 | . . . 4 ⊢ (3 lcm 2) = 6 | |
17 | 15, 16 | eqtri 2761 | . . 3 ⊢ (2 lcm 3) = 6 |
18 | 10, 17 | eqtri 2761 | . 2 ⊢ ((lcm‘(1...(3 − 1))) lcm 3) = 6 |
19 | 4, 18 | eqtri 2761 | 1 ⊢ (lcm‘(1...3)) = 6 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1542 ∈ wcel 2107 ‘cfv 6544 (class class class)co 7409 1c1 11111 − cmin 11444 ℕcn 12212 2c2 12267 3c3 12268 6c6 12271 ℤcz 12558 ...cfz 13484 lcm clcm 16525 lcmclcmf 16526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-2o 8467 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-sup 9437 df-inf 9438 df-oi 9505 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-n0 12473 df-z 12559 df-uz 12823 df-rp 12975 df-fz 13485 df-fzo 13628 df-fl 13757 df-mod 13835 df-seq 13967 df-exp 14028 df-hash 14291 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-clim 15432 df-prod 15850 df-dvds 16198 df-gcd 16436 df-lcm 16527 df-lcmf 16528 df-prm 16609 |
This theorem is referenced by: lcm4un 40881 |
Copyright terms: Public domain | W3C validator |