![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcm3un | Structured version Visualization version GIF version |
Description: Least common multiple of natural numbers up to 3 equals 6. (Contributed by metakunt, 25-Apr-2024.) |
Ref | Expression |
---|---|
lcm3un | ⊢ (lcm‘(1...3)) = 6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3nn 12372 | . . 3 ⊢ 3 ∈ ℕ | |
2 | id 22 | . . . 4 ⊢ (3 ∈ ℕ → 3 ∈ ℕ) | |
3 | 2 | lcmfunnnd 41969 | . . 3 ⊢ (3 ∈ ℕ → (lcm‘(1...3)) = ((lcm‘(1...(3 − 1))) lcm 3)) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ (lcm‘(1...3)) = ((lcm‘(1...(3 − 1))) lcm 3) |
5 | 3m1e2 12421 | . . . . . . 7 ⊢ (3 − 1) = 2 | |
6 | 5 | oveq2i 7459 | . . . . . 6 ⊢ (1...(3 − 1)) = (1...2) |
7 | 6 | fveq2i 6923 | . . . . 5 ⊢ (lcm‘(1...(3 − 1))) = (lcm‘(1...2)) |
8 | lcm2un 41971 | . . . . 5 ⊢ (lcm‘(1...2)) = 2 | |
9 | 7, 8 | eqtri 2768 | . . . 4 ⊢ (lcm‘(1...(3 − 1))) = 2 |
10 | 9 | oveq1i 7458 | . . 3 ⊢ ((lcm‘(1...(3 − 1))) lcm 3) = (2 lcm 3) |
11 | 2z 12675 | . . . . . 6 ⊢ 2 ∈ ℤ | |
12 | 3z 12676 | . . . . . 6 ⊢ 3 ∈ ℤ | |
13 | 11, 12 | pm3.2i 470 | . . . . 5 ⊢ (2 ∈ ℤ ∧ 3 ∈ ℤ) |
14 | lcmcom 16640 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 3 ∈ ℤ) → (2 lcm 3) = (3 lcm 2)) | |
15 | 13, 14 | ax-mp 5 | . . . 4 ⊢ (2 lcm 3) = (3 lcm 2) |
16 | 3lcm2e6 16779 | . . . 4 ⊢ (3 lcm 2) = 6 | |
17 | 15, 16 | eqtri 2768 | . . 3 ⊢ (2 lcm 3) = 6 |
18 | 10, 17 | eqtri 2768 | . 2 ⊢ ((lcm‘(1...(3 − 1))) lcm 3) = 6 |
19 | 4, 18 | eqtri 2768 | 1 ⊢ (lcm‘(1...3)) = 6 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 1c1 11185 − cmin 11520 ℕcn 12293 2c2 12348 3c3 12349 6c6 12352 ℤcz 12639 ...cfz 13567 lcm clcm 16635 lcmclcmf 16636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-prod 15952 df-dvds 16303 df-gcd 16541 df-lcm 16637 df-lcmf 16638 df-prm 16719 |
This theorem is referenced by: lcm4un 41973 |
Copyright terms: Public domain | W3C validator |