![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lerec2 | Structured version Visualization version GIF version |
Description: Reciprocal swap in a 'less than or equal to' relation. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
lerec2 | ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 ≤ (1 / 𝐵) ↔ 𝐵 ≤ (1 / 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gt0ne0 10785 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ≠ 0) | |
2 | rereccl 11035 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (1 / 𝐵) ∈ ℝ) | |
3 | 1, 2 | syldan 586 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → (1 / 𝐵) ∈ ℝ) |
4 | recgt0 11159 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 0 < (1 / 𝐵)) | |
5 | 3, 4 | jca 508 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → ((1 / 𝐵) ∈ ℝ ∧ 0 < (1 / 𝐵))) |
6 | lerec 11198 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ ((1 / 𝐵) ∈ ℝ ∧ 0 < (1 / 𝐵))) → (𝐴 ≤ (1 / 𝐵) ↔ (1 / (1 / 𝐵)) ≤ (1 / 𝐴))) | |
7 | 5, 6 | sylan2 587 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 ≤ (1 / 𝐵) ↔ (1 / (1 / 𝐵)) ≤ (1 / 𝐴))) |
8 | recn 10314 | . . . . . 6 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
9 | recrec 11014 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (1 / (1 / 𝐵)) = 𝐵) | |
10 | 8, 9 | sylan 576 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (1 / (1 / 𝐵)) = 𝐵) |
11 | 1, 10 | syldan 586 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → (1 / (1 / 𝐵)) = 𝐵) |
12 | 11 | adantl 474 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (1 / (1 / 𝐵)) = 𝐵) |
13 | 12 | breq1d 4853 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((1 / (1 / 𝐵)) ≤ (1 / 𝐴) ↔ 𝐵 ≤ (1 / 𝐴))) |
14 | 7, 13 | bitrd 271 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 ≤ (1 / 𝐵) ↔ 𝐵 ≤ (1 / 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 class class class wbr 4843 (class class class)co 6878 ℂcc 10222 ℝcr 10223 0cc0 10224 1c1 10225 < clt 10363 ≤ cle 10364 / cdiv 10976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-po 5233 df-so 5234 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 |
This theorem is referenced by: lerec2d 12138 birthdaylem3 25032 elpell1qr2 38222 |
Copyright terms: Public domain | W3C validator |