MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lerec2 Structured version   Visualization version   GIF version

Theorem lerec2 11964
Description: Reciprocal swap in a 'less than or equal to' relation. (Contributed by NM, 24-Feb-2005.)
Assertion
Ref Expression
lerec2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 ≤ (1 / 𝐵) ↔ 𝐵 ≤ (1 / 𝐴)))

Proof of Theorem lerec2
StepHypRef Expression
1 gt0ne0 11541 . . . . 5 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ≠ 0)
2 rereccl 11794 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (1 / 𝐵) ∈ ℝ)
31, 2syldan 591 . . . 4 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → (1 / 𝐵) ∈ ℝ)
4 recgt0 11922 . . . 4 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 0 < (1 / 𝐵))
53, 4jca 512 . . 3 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → ((1 / 𝐵) ∈ ℝ ∧ 0 < (1 / 𝐵)))
6 lerec 11959 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ ((1 / 𝐵) ∈ ℝ ∧ 0 < (1 / 𝐵))) → (𝐴 ≤ (1 / 𝐵) ↔ (1 / (1 / 𝐵)) ≤ (1 / 𝐴)))
75, 6sylan2 593 . 2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 ≤ (1 / 𝐵) ↔ (1 / (1 / 𝐵)) ≤ (1 / 𝐴)))
8 recn 11062 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
9 recrec 11773 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (1 / (1 / 𝐵)) = 𝐵)
108, 1, 9syl2an2r 682 . . . 4 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → (1 / (1 / 𝐵)) = 𝐵)
1110adantl 482 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (1 / (1 / 𝐵)) = 𝐵)
1211breq1d 5102 . 2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((1 / (1 / 𝐵)) ≤ (1 / 𝐴) ↔ 𝐵 ≤ (1 / 𝐴)))
137, 12bitrd 278 1 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 ≤ (1 / 𝐵) ↔ 𝐵 ≤ (1 / 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wne 2940   class class class wbr 5092  (class class class)co 7337  cc 10970  cr 10971  0cc0 10972  1c1 10973   < clt 11110  cle 11111   / cdiv 11733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-po 5532  df-so 5533  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734
This theorem is referenced by:  lerec2d  12894  birthdaylem3  26209  elpell1qr2  40964
  Copyright terms: Public domain W3C validator