MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  redivcl Structured version   Visualization version   GIF version

Theorem redivcl 11932
Description: Closure law for division of reals. (Contributed by NM, 27-Sep-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
redivcl ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ต โ‰  0) โ†’ (๐ด / ๐ต) โˆˆ โ„)

Proof of Theorem redivcl
StepHypRef Expression
1 simp1 1136 . . . 4 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ต โ‰  0) โ†’ ๐ด โˆˆ โ„)
21recnd 11241 . . 3 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ต โ‰  0) โ†’ ๐ด โˆˆ โ„‚)
3 simp2 1137 . . . 4 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ต โ‰  0) โ†’ ๐ต โˆˆ โ„)
43recnd 11241 . . 3 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ต โ‰  0) โ†’ ๐ต โˆˆ โ„‚)
5 simp3 1138 . . 3 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ต โ‰  0) โ†’ ๐ต โ‰  0)
6 divrec 11887 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0) โ†’ (๐ด / ๐ต) = (๐ด ยท (1 / ๐ต)))
72, 4, 5, 6syl3anc 1371 . 2 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ต โ‰  0) โ†’ (๐ด / ๐ต) = (๐ด ยท (1 / ๐ต)))
8 rereccl 11931 . . . 4 ((๐ต โˆˆ โ„ โˆง ๐ต โ‰  0) โ†’ (1 / ๐ต) โˆˆ โ„)
983adant1 1130 . . 3 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ต โ‰  0) โ†’ (1 / ๐ต) โˆˆ โ„)
101, 9remulcld 11243 . 2 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ต โ‰  0) โ†’ (๐ด ยท (1 / ๐ต)) โˆˆ โ„)
117, 10eqeltrd 2833 1 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ต โ‰  0) โ†’ (๐ด / ๐ต) โˆˆ โ„)
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง w3a 1087   = wceq 1541   โˆˆ wcel 2106   โ‰  wne 2940  (class class class)co 7408  โ„‚cc 11107  โ„cr 11108  0cc0 11109  1c1 11110   ยท cmul 11114   / cdiv 11870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871
This theorem is referenced by:  redivclzi  11979  redivcld  12041  lediv1  12078  lt2mul2div  12091  lemuldiv  12093  ledivdiv  12102  ltdiv23  12104  lediv23  12105  nndivre  12252  rehalfcl  12437  nn0nndivcl  12542  qre  12936  rpdivcl  12998  rerpdivcl  13003  fldiv4lem1div2  13801  resin4p  16080  recos4p  16081  retancl  16084  sin01gt0  16132  cos01gt0  16133  divalgmod  16348  modgcd  16473  mulgmodid  18992  sineq0  26032  efif1olem2  26051  dp2cl  32041  dp2lt  32046  rexdiv  32087  mblfinlem1  36520  mblfinlem2  36521  itg2addnclem2  36535  stoweidlem13  44719  stoweidlem34  44740  stoweid  44769  reseccl  47788  recsccl  47789  recotcl  47790
  Copyright terms: Public domain W3C validator