MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  redivcl Structured version   Visualization version   GIF version

Theorem redivcl 11877
Description: Closure law for division of reals. (Contributed by NM, 27-Sep-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
redivcl ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ)

Proof of Theorem redivcl
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℝ)
21recnd 11178 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℂ)
3 simp2 1137 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℝ)
43recnd 11178 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ)
5 simp3 1138 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0)
6 divrec 11829 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)))
72, 4, 5, 6syl3anc 1373 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)))
8 rereccl 11876 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (1 / 𝐵) ∈ ℝ)
983adant1 1130 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (1 / 𝐵) ∈ ℝ)
101, 9remulcld 11180 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 · (1 / 𝐵)) ∈ ℝ)
117, 10eqeltrd 2828 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wne 2925  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   · cmul 11049   / cdiv 11811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812
This theorem is referenced by:  redivclzi  11924  redivcld  11986  lediv1  12024  lt2mul2div  12037  lemuldiv  12039  ledivdiv  12048  ltdiv23  12050  lediv23  12051  nndivre  12203  rehalfcl  12385  nn0nndivcl  12490  qre  12888  rpdivcl  12954  rerpdivcl  12959  fldiv4lem1div2  13775  resin4p  16082  recos4p  16083  retancl  16086  sin01gt0  16134  cos01gt0  16135  divalgmod  16352  modgcd  16478  mulgmodid  19021  sineq0  26409  efif1olem2  26428  dp2cl  32773  dp2lt  32778  rexdiv  32819  mblfinlem1  37624  mblfinlem2  37625  itg2addnclem2  37639  stoweidlem13  45984  stoweidlem34  46005  stoweid  46034  gpgprismgrusgra  48022  reseccl  49715  recsccl  49716  recotcl  49717
  Copyright terms: Public domain W3C validator