![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > redivcl | Structured version Visualization version GIF version |
Description: Closure law for division of reals. (Contributed by NM, 27-Sep-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
redivcl | โข ((๐ด โ โ โง ๐ต โ โ โง ๐ต โ 0) โ (๐ด / ๐ต) โ โ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1133 | . . . 4 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ต โ 0) โ ๐ด โ โ) | |
2 | 1 | recnd 11280 | . . 3 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ต โ 0) โ ๐ด โ โ) |
3 | simp2 1134 | . . . 4 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ต โ 0) โ ๐ต โ โ) | |
4 | 3 | recnd 11280 | . . 3 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ต โ 0) โ ๐ต โ โ) |
5 | simp3 1135 | . . 3 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ต โ 0) โ ๐ต โ 0) | |
6 | divrec 11926 | . . 3 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ต โ 0) โ (๐ด / ๐ต) = (๐ด ยท (1 / ๐ต))) | |
7 | 2, 4, 5, 6 | syl3anc 1368 | . 2 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ต โ 0) โ (๐ด / ๐ต) = (๐ด ยท (1 / ๐ต))) |
8 | rereccl 11970 | . . . 4 โข ((๐ต โ โ โง ๐ต โ 0) โ (1 / ๐ต) โ โ) | |
9 | 8 | 3adant1 1127 | . . 3 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ต โ 0) โ (1 / ๐ต) โ โ) |
10 | 1, 9 | remulcld 11282 | . 2 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ต โ 0) โ (๐ด ยท (1 / ๐ต)) โ โ) |
11 | 7, 10 | eqeltrd 2829 | 1 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ต โ 0) โ (๐ด / ๐ต) โ โ) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง w3a 1084 = wceq 1533 โ wcel 2098 โ wne 2937 (class class class)co 7426 โcc 11144 โcr 11145 0cc0 11146 1c1 11147 ยท cmul 11151 / cdiv 11909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-po 5594 df-so 5595 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 |
This theorem is referenced by: redivclzi 12018 redivcld 12080 lediv1 12117 lt2mul2div 12130 lemuldiv 12132 ledivdiv 12141 ltdiv23 12143 lediv23 12144 nndivre 12291 rehalfcl 12476 nn0nndivcl 12581 qre 12975 rpdivcl 13039 rerpdivcl 13044 fldiv4lem1div2 13842 resin4p 16122 recos4p 16123 retancl 16126 sin01gt0 16174 cos01gt0 16175 divalgmod 16390 modgcd 16515 mulgmodid 19075 sineq0 26478 efif1olem2 26497 dp2cl 32624 dp2lt 32629 rexdiv 32670 mblfinlem1 37163 mblfinlem2 37164 itg2addnclem2 37178 stoweidlem13 45430 stoweidlem34 45451 stoweid 45480 reseccl 48262 recsccl 48263 recotcl 48264 |
Copyright terms: Public domain | W3C validator |