Proof of Theorem cdlemg7fvN
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp1 1136 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 2 |  | simp32 1210 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝐺 ∈ 𝑇) | 
| 3 |  | simp2l 1199 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | 
| 4 |  | cdlemg7fv.l | . . . . 5
⊢  ≤ =
(le‘𝐾) | 
| 5 |  | cdlemg7fv.a | . . . . 5
⊢ 𝐴 = (Atoms‘𝐾) | 
| 6 |  | cdlemg7fv.h | . . . . 5
⊢ 𝐻 = (LHyp‘𝐾) | 
| 7 |  | cdlemg7fv.t | . . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| 8 | 4, 5, 6, 7 | ltrnel 40142 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) | 
| 9 | 1, 2, 3, 8 | syl3anc 1372 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) | 
| 10 |  | simp2r 1200 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) | 
| 11 |  | cdlemg7fv.b | . . . . 5
⊢ 𝐵 = (Base‘𝐾) | 
| 12 | 4, 5, 6, 7, 11 | cdlemg7fvbwN 40610 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇) → ((𝐺‘𝑋) ∈ 𝐵 ∧ ¬ (𝐺‘𝑋) ≤ 𝑊)) | 
| 13 | 1, 10, 2, 12 | syl3anc 1372 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((𝐺‘𝑋) ∈ 𝐵 ∧ ¬ (𝐺‘𝑋) ≤ 𝑊)) | 
| 14 |  | simp31 1209 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝐹 ∈ 𝑇) | 
| 15 |  | simp33 1211 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋) | 
| 16 |  | cdlemg7fv.j | . . . . . . . . 9
⊢  ∨ =
(join‘𝐾) | 
| 17 |  | cdlemg7fv.m | . . . . . . . . 9
⊢  ∧ =
(meet‘𝐾) | 
| 18 | 6, 7, 4, 16, 5, 17, 11 | cdlemg2fv 40602 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐺‘𝑋) = ((𝐺‘𝑃) ∨ (𝑋 ∧ 𝑊))) | 
| 19 | 1, 3, 10, 2, 15, 18 | syl122anc 1380 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐺‘𝑋) = ((𝐺‘𝑃) ∨ (𝑋 ∧ 𝑊))) | 
| 20 | 19 | oveq1d 7447 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((𝐺‘𝑋) ∧ 𝑊) = (((𝐺‘𝑃) ∨ (𝑋 ∧ 𝑊)) ∧ 𝑊)) | 
| 21 |  | simp2rl 1242 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑋 ∈ 𝐵) | 
| 22 | 11, 4, 16, 17, 5, 6 | lhpelim 40040 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → (((𝐺‘𝑃) ∨ (𝑋 ∧ 𝑊)) ∧ 𝑊) = (𝑋 ∧ 𝑊)) | 
| 23 | 1, 9, 21, 22 | syl3anc 1372 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (((𝐺‘𝑃) ∨ (𝑋 ∧ 𝑊)) ∧ 𝑊) = (𝑋 ∧ 𝑊)) | 
| 24 | 20, 23 | eqtrd 2776 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((𝐺‘𝑋) ∧ 𝑊) = (𝑋 ∧ 𝑊)) | 
| 25 | 24 | oveq2d 7448 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((𝐺‘𝑃) ∨ ((𝐺‘𝑋) ∧ 𝑊)) = ((𝐺‘𝑃) ∨ (𝑋 ∧ 𝑊))) | 
| 26 | 25, 19 | eqtr4d 2779 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((𝐺‘𝑃) ∨ ((𝐺‘𝑋) ∧ 𝑊)) = (𝐺‘𝑋)) | 
| 27 | 6, 7, 4, 16, 5, 17, 11 | cdlemg2fv 40602 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊) ∧ ((𝐺‘𝑋) ∈ 𝐵 ∧ ¬ (𝐺‘𝑋) ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ ((𝐺‘𝑃) ∨ ((𝐺‘𝑋) ∧ 𝑊)) = (𝐺‘𝑋))) → (𝐹‘(𝐺‘𝑋)) = ((𝐹‘(𝐺‘𝑃)) ∨ ((𝐺‘𝑋) ∧ 𝑊))) | 
| 28 | 1, 9, 13, 14, 26, 27 | syl122anc 1380 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐹‘(𝐺‘𝑋)) = ((𝐹‘(𝐺‘𝑃)) ∨ ((𝐺‘𝑋) ∧ 𝑊))) | 
| 29 | 24 | oveq2d 7448 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((𝐹‘(𝐺‘𝑃)) ∨ ((𝐺‘𝑋) ∧ 𝑊)) = ((𝐹‘(𝐺‘𝑃)) ∨ (𝑋 ∧ 𝑊))) | 
| 30 | 28, 29 | eqtrd 2776 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐹‘(𝐺‘𝑋)) = ((𝐹‘(𝐺‘𝑃)) ∨ (𝑋 ∧ 𝑊))) |