Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg7fvN Structured version   Visualization version   GIF version

Theorem cdlemg7fvN 37238
Description: Value of a translation composition in terms of an associated atom. (Contributed by NM, 28-Apr-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemg7fv.b 𝐵 = (Base‘𝐾)
cdlemg7fv.l = (le‘𝐾)
cdlemg7fv.j = (join‘𝐾)
cdlemg7fv.m = (meet‘𝐾)
cdlemg7fv.a 𝐴 = (Atoms‘𝐾)
cdlemg7fv.h 𝐻 = (LHyp‘𝐾)
cdlemg7fv.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg7fvN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃 (𝑋 𝑊)) = 𝑋)) → (𝐹‘(𝐺𝑋)) = ((𝐹‘(𝐺𝑃)) (𝑋 𝑊)))

Proof of Theorem cdlemg7fvN
StepHypRef Expression
1 simp1 1117 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃 (𝑋 𝑊)) = 𝑋)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp32 1191 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃 (𝑋 𝑊)) = 𝑋)) → 𝐺𝑇)
3 simp2l 1180 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃 (𝑋 𝑊)) = 𝑋)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
4 cdlemg7fv.l . . . . 5 = (le‘𝐾)
5 cdlemg7fv.a . . . . 5 𝐴 = (Atoms‘𝐾)
6 cdlemg7fv.h . . . . 5 𝐻 = (LHyp‘𝐾)
7 cdlemg7fv.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
84, 5, 6, 7ltrnel 36753 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
91, 2, 3, 8syl3anc 1352 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃 (𝑋 𝑊)) = 𝑋)) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
10 simp2r 1181 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃 (𝑋 𝑊)) = 𝑋)) → (𝑋𝐵 ∧ ¬ 𝑋 𝑊))
11 cdlemg7fv.b . . . . 5 𝐵 = (Base‘𝐾)
124, 5, 6, 7, 11cdlemg7fvbwN 37221 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ 𝐺𝑇) → ((𝐺𝑋) ∈ 𝐵 ∧ ¬ (𝐺𝑋) 𝑊))
131, 10, 2, 12syl3anc 1352 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃 (𝑋 𝑊)) = 𝑋)) → ((𝐺𝑋) ∈ 𝐵 ∧ ¬ (𝐺𝑋) 𝑊))
14 simp31 1190 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃 (𝑋 𝑊)) = 𝑋)) → 𝐹𝑇)
15 simp33 1192 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃 (𝑋 𝑊)) = 𝑋)) → (𝑃 (𝑋 𝑊)) = 𝑋)
16 cdlemg7fv.j . . . . . . . . 9 = (join‘𝐾)
17 cdlemg7fv.m . . . . . . . . 9 = (meet‘𝐾)
186, 7, 4, 16, 5, 17, 11cdlemg2fv 37213 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐺𝑇 ∧ (𝑃 (𝑋 𝑊)) = 𝑋)) → (𝐺𝑋) = ((𝐺𝑃) (𝑋 𝑊)))
191, 3, 10, 2, 15, 18syl122anc 1360 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃 (𝑋 𝑊)) = 𝑋)) → (𝐺𝑋) = ((𝐺𝑃) (𝑋 𝑊)))
2019oveq1d 6990 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃 (𝑋 𝑊)) = 𝑋)) → ((𝐺𝑋) 𝑊) = (((𝐺𝑃) (𝑋 𝑊)) 𝑊))
21 simp2rl 1223 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃 (𝑋 𝑊)) = 𝑋)) → 𝑋𝐵)
2211, 4, 16, 17, 5, 6lhpelim 36651 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊) ∧ 𝑋𝐵) → (((𝐺𝑃) (𝑋 𝑊)) 𝑊) = (𝑋 𝑊))
231, 9, 21, 22syl3anc 1352 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃 (𝑋 𝑊)) = 𝑋)) → (((𝐺𝑃) (𝑋 𝑊)) 𝑊) = (𝑋 𝑊))
2420, 23eqtrd 2809 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃 (𝑋 𝑊)) = 𝑋)) → ((𝐺𝑋) 𝑊) = (𝑋 𝑊))
2524oveq2d 6991 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃 (𝑋 𝑊)) = 𝑋)) → ((𝐺𝑃) ((𝐺𝑋) 𝑊)) = ((𝐺𝑃) (𝑋 𝑊)))
2625, 19eqtr4d 2812 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃 (𝑋 𝑊)) = 𝑋)) → ((𝐺𝑃) ((𝐺𝑋) 𝑊)) = (𝐺𝑋))
276, 7, 4, 16, 5, 17, 11cdlemg2fv 37213 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊) ∧ ((𝐺𝑋) ∈ 𝐵 ∧ ¬ (𝐺𝑋) 𝑊)) ∧ (𝐹𝑇 ∧ ((𝐺𝑃) ((𝐺𝑋) 𝑊)) = (𝐺𝑋))) → (𝐹‘(𝐺𝑋)) = ((𝐹‘(𝐺𝑃)) ((𝐺𝑋) 𝑊)))
281, 9, 13, 14, 26, 27syl122anc 1360 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃 (𝑋 𝑊)) = 𝑋)) → (𝐹‘(𝐺𝑋)) = ((𝐹‘(𝐺𝑃)) ((𝐺𝑋) 𝑊)))
2924oveq2d 6991 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃 (𝑋 𝑊)) = 𝑋)) → ((𝐹‘(𝐺𝑃)) ((𝐺𝑋) 𝑊)) = ((𝐹‘(𝐺𝑃)) (𝑋 𝑊)))
3028, 29eqtrd 2809 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝐹𝑇𝐺𝑇 ∧ (𝑃 (𝑋 𝑊)) = 𝑋)) → (𝐹‘(𝐺𝑋)) = ((𝐹‘(𝐺𝑃)) (𝑋 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387  w3a 1069   = wceq 1508  wcel 2051   class class class wbr 4926  cfv 6186  (class class class)co 6975  Basecbs 16338  lecple 16427  joincjn 17425  meetcmee 17426  Atomscatm 35877  HLchlt 35964  LHypclh 36598  LTrncltrn 36715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-rep 5046  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-riotaBAD 35567
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-ral 3088  df-rex 3089  df-reu 3090  df-rmo 3091  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-op 4443  df-uni 4710  df-iun 4791  df-iin 4792  df-br 4927  df-opab 4989  df-mpt 5006  df-id 5309  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-1st 7500  df-2nd 7501  df-undef 7741  df-map 8207  df-proset 17409  df-poset 17427  df-plt 17439  df-lub 17455  df-glb 17456  df-join 17457  df-meet 17458  df-p0 17520  df-p1 17521  df-lat 17527  df-clat 17589  df-oposet 35790  df-ol 35792  df-oml 35793  df-covers 35880  df-ats 35881  df-atl 35912  df-cvlat 35936  df-hlat 35965  df-llines 36112  df-lplanes 36113  df-lvols 36114  df-lines 36115  df-psubsp 36117  df-pmap 36118  df-padd 36410  df-lhyp 36602  df-laut 36603  df-ldil 36718  df-ltrn 36719  df-trl 36773
This theorem is referenced by:  cdlemg7aN  37239
  Copyright terms: Public domain W3C validator