Proof of Theorem cdlemg7fvN
Step | Hyp | Ref
| Expression |
1 | | simp1 1134 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | simp32 1208 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝐺 ∈ 𝑇) |
3 | | simp2l 1197 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
4 | | cdlemg7fv.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
5 | | cdlemg7fv.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
6 | | cdlemg7fv.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
7 | | cdlemg7fv.t |
. . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
8 | 4, 5, 6, 7 | ltrnel 38080 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) |
9 | 1, 2, 3, 8 | syl3anc 1369 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) |
10 | | simp2r 1198 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) |
11 | | cdlemg7fv.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
12 | 4, 5, 6, 7, 11 | cdlemg7fvbwN 38548 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ 𝐺 ∈ 𝑇) → ((𝐺‘𝑋) ∈ 𝐵 ∧ ¬ (𝐺‘𝑋) ≤ 𝑊)) |
13 | 1, 10, 2, 12 | syl3anc 1369 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((𝐺‘𝑋) ∈ 𝐵 ∧ ¬ (𝐺‘𝑋) ≤ 𝑊)) |
14 | | simp31 1207 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝐹 ∈ 𝑇) |
15 | | simp33 1209 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋) |
16 | | cdlemg7fv.j |
. . . . . . . . 9
⊢ ∨ =
(join‘𝐾) |
17 | | cdlemg7fv.m |
. . . . . . . . 9
⊢ ∧ =
(meet‘𝐾) |
18 | 6, 7, 4, 16, 5, 17, 11 | cdlemg2fv 38540 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐺‘𝑋) = ((𝐺‘𝑃) ∨ (𝑋 ∧ 𝑊))) |
19 | 1, 3, 10, 2, 15, 18 | syl122anc 1377 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐺‘𝑋) = ((𝐺‘𝑃) ∨ (𝑋 ∧ 𝑊))) |
20 | 19 | oveq1d 7270 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((𝐺‘𝑋) ∧ 𝑊) = (((𝐺‘𝑃) ∨ (𝑋 ∧ 𝑊)) ∧ 𝑊)) |
21 | | simp2rl 1240 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑋 ∈ 𝐵) |
22 | 11, 4, 16, 17, 5, 6 | lhpelim 37978 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) → (((𝐺‘𝑃) ∨ (𝑋 ∧ 𝑊)) ∧ 𝑊) = (𝑋 ∧ 𝑊)) |
23 | 1, 9, 21, 22 | syl3anc 1369 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (((𝐺‘𝑃) ∨ (𝑋 ∧ 𝑊)) ∧ 𝑊) = (𝑋 ∧ 𝑊)) |
24 | 20, 23 | eqtrd 2778 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((𝐺‘𝑋) ∧ 𝑊) = (𝑋 ∧ 𝑊)) |
25 | 24 | oveq2d 7271 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((𝐺‘𝑃) ∨ ((𝐺‘𝑋) ∧ 𝑊)) = ((𝐺‘𝑃) ∨ (𝑋 ∧ 𝑊))) |
26 | 25, 19 | eqtr4d 2781 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((𝐺‘𝑃) ∨ ((𝐺‘𝑋) ∧ 𝑊)) = (𝐺‘𝑋)) |
27 | 6, 7, 4, 16, 5, 17, 11 | cdlemg2fv 38540 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊) ∧ ((𝐺‘𝑋) ∈ 𝐵 ∧ ¬ (𝐺‘𝑋) ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ ((𝐺‘𝑃) ∨ ((𝐺‘𝑋) ∧ 𝑊)) = (𝐺‘𝑋))) → (𝐹‘(𝐺‘𝑋)) = ((𝐹‘(𝐺‘𝑃)) ∨ ((𝐺‘𝑋) ∧ 𝑊))) |
28 | 1, 9, 13, 14, 26, 27 | syl122anc 1377 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐹‘(𝐺‘𝑋)) = ((𝐹‘(𝐺‘𝑃)) ∨ ((𝐺‘𝑋) ∧ 𝑊))) |
29 | 24 | oveq2d 7271 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((𝐹‘(𝐺‘𝑃)) ∨ ((𝐺‘𝑋) ∧ 𝑊)) = ((𝐹‘(𝐺‘𝑃)) ∨ (𝑋 ∧ 𝑊))) |
30 | 28, 29 | eqtrd 2778 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐹‘(𝐺‘𝑋)) = ((𝐹‘(𝐺‘𝑃)) ∨ (𝑋 ∧ 𝑊))) |