MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcnsqrt Structured version   Visualization version   GIF version

Theorem dvcnsqrt 26804
Description: Derivative of square root function. (Contributed by Brendan Leahy, 18-Dec-2018.)
Hypothesis
Ref Expression
dvcncxp1.d 𝐷 = (ℂ ∖ (-∞(,]0))
Assertion
Ref Expression
dvcnsqrt (ℂ D (𝑥𝐷 ↦ (√‘𝑥))) = (𝑥𝐷 ↦ (1 / (2 · (√‘𝑥))))
Distinct variable group:   𝑥,𝐷

Proof of Theorem dvcnsqrt
StepHypRef Expression
1 halfcn 12508 . . 3 (1 / 2) ∈ ℂ
2 dvcncxp1.d . . . 4 𝐷 = (ℂ ∖ (-∞(,]0))
32dvcncxp1 26803 . . 3 ((1 / 2) ∈ ℂ → (ℂ D (𝑥𝐷 ↦ (𝑥𝑐(1 / 2)))) = (𝑥𝐷 ↦ ((1 / 2) · (𝑥𝑐((1 / 2) − 1)))))
41, 3ax-mp 5 . 2 (ℂ D (𝑥𝐷 ↦ (𝑥𝑐(1 / 2)))) = (𝑥𝐷 ↦ ((1 / 2) · (𝑥𝑐((1 / 2) − 1))))
5 difss 4159 . . . . . . 7 (ℂ ∖ (-∞(,]0)) ⊆ ℂ
62, 5eqsstri 4043 . . . . . 6 𝐷 ⊆ ℂ
76sseli 4004 . . . . 5 (𝑥𝐷𝑥 ∈ ℂ)
8 cxpsqrt 26763 . . . . 5 (𝑥 ∈ ℂ → (𝑥𝑐(1 / 2)) = (√‘𝑥))
97, 8syl 17 . . . 4 (𝑥𝐷 → (𝑥𝑐(1 / 2)) = (√‘𝑥))
109mpteq2ia 5269 . . 3 (𝑥𝐷 ↦ (𝑥𝑐(1 / 2))) = (𝑥𝐷 ↦ (√‘𝑥))
1110oveq2i 7459 . 2 (ℂ D (𝑥𝐷 ↦ (𝑥𝑐(1 / 2)))) = (ℂ D (𝑥𝐷 ↦ (√‘𝑥)))
12 1p0e1 12417 . . . . . . . . . . 11 (1 + 0) = 1
13 ax-1cn 11242 . . . . . . . . . . . 12 1 ∈ ℂ
14 2halves 12521 . . . . . . . . . . . 12 (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1)
1513, 14ax-mp 5 . . . . . . . . . . 11 ((1 / 2) + (1 / 2)) = 1
1612, 15eqtr4i 2771 . . . . . . . . . 10 (1 + 0) = ((1 / 2) + (1 / 2))
17 0cn 11282 . . . . . . . . . . 11 0 ∈ ℂ
18 addsubeq4 11551 . . . . . . . . . . 11 (((1 ∈ ℂ ∧ 0 ∈ ℂ) ∧ ((1 / 2) ∈ ℂ ∧ (1 / 2) ∈ ℂ)) → ((1 + 0) = ((1 / 2) + (1 / 2)) ↔ ((1 / 2) − 1) = (0 − (1 / 2))))
1913, 17, 1, 1, 18mp4an 692 . . . . . . . . . 10 ((1 + 0) = ((1 / 2) + (1 / 2)) ↔ ((1 / 2) − 1) = (0 − (1 / 2)))
2016, 19mpbi 230 . . . . . . . . 9 ((1 / 2) − 1) = (0 − (1 / 2))
21 df-neg 11523 . . . . . . . . 9 -(1 / 2) = (0 − (1 / 2))
2220, 21eqtr4i 2771 . . . . . . . 8 ((1 / 2) − 1) = -(1 / 2)
2322oveq2i 7459 . . . . . . 7 (𝑥𝑐((1 / 2) − 1)) = (𝑥𝑐-(1 / 2))
242logdmn0 26700 . . . . . . . 8 (𝑥𝐷𝑥 ≠ 0)
251a1i 11 . . . . . . . 8 (𝑥𝐷 → (1 / 2) ∈ ℂ)
267, 24, 25cxpnegd 26775 . . . . . . 7 (𝑥𝐷 → (𝑥𝑐-(1 / 2)) = (1 / (𝑥𝑐(1 / 2))))
2723, 26eqtrid 2792 . . . . . 6 (𝑥𝐷 → (𝑥𝑐((1 / 2) − 1)) = (1 / (𝑥𝑐(1 / 2))))
289oveq2d 7464 . . . . . 6 (𝑥𝐷 → (1 / (𝑥𝑐(1 / 2))) = (1 / (√‘𝑥)))
2927, 28eqtrd 2780 . . . . 5 (𝑥𝐷 → (𝑥𝑐((1 / 2) − 1)) = (1 / (√‘𝑥)))
3029oveq2d 7464 . . . 4 (𝑥𝐷 → ((1 / 2) · (𝑥𝑐((1 / 2) − 1))) = ((1 / 2) · (1 / (√‘𝑥))))
31 1cnd 11285 . . . . . 6 (𝑥𝐷 → 1 ∈ ℂ)
32 2cnd 12371 . . . . . 6 (𝑥𝐷 → 2 ∈ ℂ)
337sqrtcld 15486 . . . . . 6 (𝑥𝐷 → (√‘𝑥) ∈ ℂ)
34 2ne0 12397 . . . . . . 7 2 ≠ 0
3534a1i 11 . . . . . 6 (𝑥𝐷 → 2 ≠ 0)
367adantr 480 . . . . . . . . . 10 ((𝑥𝐷 ∧ (√‘𝑥) = 0) → 𝑥 ∈ ℂ)
37 simpr 484 . . . . . . . . . 10 ((𝑥𝐷 ∧ (√‘𝑥) = 0) → (√‘𝑥) = 0)
3836, 37sqr00d 15490 . . . . . . . . 9 ((𝑥𝐷 ∧ (√‘𝑥) = 0) → 𝑥 = 0)
3938ex 412 . . . . . . . 8 (𝑥𝐷 → ((√‘𝑥) = 0 → 𝑥 = 0))
4039necon3d 2967 . . . . . . 7 (𝑥𝐷 → (𝑥 ≠ 0 → (√‘𝑥) ≠ 0))
4124, 40mpd 15 . . . . . 6 (𝑥𝐷 → (√‘𝑥) ≠ 0)
4231, 32, 31, 33, 35, 41divmuldivd 12111 . . . . 5 (𝑥𝐷 → ((1 / 2) · (1 / (√‘𝑥))) = ((1 · 1) / (2 · (√‘𝑥))))
43 1t1e1 12455 . . . . . 6 (1 · 1) = 1
4443oveq1i 7458 . . . . 5 ((1 · 1) / (2 · (√‘𝑥))) = (1 / (2 · (√‘𝑥)))
4542, 44eqtrdi 2796 . . . 4 (𝑥𝐷 → ((1 / 2) · (1 / (√‘𝑥))) = (1 / (2 · (√‘𝑥))))
4630, 45eqtrd 2780 . . 3 (𝑥𝐷 → ((1 / 2) · (𝑥𝑐((1 / 2) − 1))) = (1 / (2 · (√‘𝑥))))
4746mpteq2ia 5269 . 2 (𝑥𝐷 ↦ ((1 / 2) · (𝑥𝑐((1 / 2) − 1)))) = (𝑥𝐷 ↦ (1 / (2 · (√‘𝑥))))
484, 11, 473eqtr3i 2776 1 (ℂ D (𝑥𝐷 ↦ (√‘𝑥))) = (𝑥𝐷 ↦ (1 / (2 · (√‘𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  cdif 3973  cmpt 5249  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  -∞cmnf 11322  cmin 11520  -cneg 11521   / cdiv 11947  2c2 12348  (,]cioc 13408  csqrt 15282   D cdv 25918  𝑐ccxp 26615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-tan 16119  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616  df-cxp 26617
This theorem is referenced by:  dvasin  37664
  Copyright terms: Public domain W3C validator