| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvcnsqrt | Structured version Visualization version GIF version | ||
| Description: Derivative of square root function. (Contributed by Brendan Leahy, 18-Dec-2018.) |
| Ref | Expression |
|---|---|
| dvcncxp1.d | ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) |
| Ref | Expression |
|---|---|
| dvcnsqrt | ⊢ (ℂ D (𝑥 ∈ 𝐷 ↦ (√‘𝑥))) = (𝑥 ∈ 𝐷 ↦ (1 / (2 · (√‘𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfcn 12330 | . . 3 ⊢ (1 / 2) ∈ ℂ | |
| 2 | dvcncxp1.d | . . . 4 ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) | |
| 3 | 2 | dvcncxp1 26674 | . . 3 ⊢ ((1 / 2) ∈ ℂ → (ℂ D (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐(1 / 2)))) = (𝑥 ∈ 𝐷 ↦ ((1 / 2) · (𝑥↑𝑐((1 / 2) − 1))))) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ (ℂ D (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐(1 / 2)))) = (𝑥 ∈ 𝐷 ↦ ((1 / 2) · (𝑥↑𝑐((1 / 2) − 1)))) |
| 5 | difss 4081 | . . . . . . 7 ⊢ (ℂ ∖ (-∞(,]0)) ⊆ ℂ | |
| 6 | 2, 5 | eqsstri 3976 | . . . . . 6 ⊢ 𝐷 ⊆ ℂ |
| 7 | 6 | sseli 3925 | . . . . 5 ⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ ℂ) |
| 8 | cxpsqrt 26634 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (𝑥↑𝑐(1 / 2)) = (√‘𝑥)) | |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝑥 ∈ 𝐷 → (𝑥↑𝑐(1 / 2)) = (√‘𝑥)) |
| 10 | 9 | mpteq2ia 5181 | . . 3 ⊢ (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐(1 / 2))) = (𝑥 ∈ 𝐷 ↦ (√‘𝑥)) |
| 11 | 10 | oveq2i 7352 | . 2 ⊢ (ℂ D (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐(1 / 2)))) = (ℂ D (𝑥 ∈ 𝐷 ↦ (√‘𝑥))) |
| 12 | 1p0e1 12239 | . . . . . . . . . . 11 ⊢ (1 + 0) = 1 | |
| 13 | ax-1cn 11059 | . . . . . . . . . . . 12 ⊢ 1 ∈ ℂ | |
| 14 | 2halves 12334 | . . . . . . . . . . . 12 ⊢ (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1) | |
| 15 | 13, 14 | ax-mp 5 | . . . . . . . . . . 11 ⊢ ((1 / 2) + (1 / 2)) = 1 |
| 16 | 12, 15 | eqtr4i 2757 | . . . . . . . . . 10 ⊢ (1 + 0) = ((1 / 2) + (1 / 2)) |
| 17 | 0cn 11099 | . . . . . . . . . . 11 ⊢ 0 ∈ ℂ | |
| 18 | addsubeq4 11370 | . . . . . . . . . . 11 ⊢ (((1 ∈ ℂ ∧ 0 ∈ ℂ) ∧ ((1 / 2) ∈ ℂ ∧ (1 / 2) ∈ ℂ)) → ((1 + 0) = ((1 / 2) + (1 / 2)) ↔ ((1 / 2) − 1) = (0 − (1 / 2)))) | |
| 19 | 13, 17, 1, 1, 18 | mp4an 693 | . . . . . . . . . 10 ⊢ ((1 + 0) = ((1 / 2) + (1 / 2)) ↔ ((1 / 2) − 1) = (0 − (1 / 2))) |
| 20 | 16, 19 | mpbi 230 | . . . . . . . . 9 ⊢ ((1 / 2) − 1) = (0 − (1 / 2)) |
| 21 | df-neg 11342 | . . . . . . . . 9 ⊢ -(1 / 2) = (0 − (1 / 2)) | |
| 22 | 20, 21 | eqtr4i 2757 | . . . . . . . 8 ⊢ ((1 / 2) − 1) = -(1 / 2) |
| 23 | 22 | oveq2i 7352 | . . . . . . 7 ⊢ (𝑥↑𝑐((1 / 2) − 1)) = (𝑥↑𝑐-(1 / 2)) |
| 24 | 2 | logdmn0 26571 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐷 → 𝑥 ≠ 0) |
| 25 | 1 | a1i 11 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐷 → (1 / 2) ∈ ℂ) |
| 26 | 7, 24, 25 | cxpnegd 26646 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐷 → (𝑥↑𝑐-(1 / 2)) = (1 / (𝑥↑𝑐(1 / 2)))) |
| 27 | 23, 26 | eqtrid 2778 | . . . . . 6 ⊢ (𝑥 ∈ 𝐷 → (𝑥↑𝑐((1 / 2) − 1)) = (1 / (𝑥↑𝑐(1 / 2)))) |
| 28 | 9 | oveq2d 7357 | . . . . . 6 ⊢ (𝑥 ∈ 𝐷 → (1 / (𝑥↑𝑐(1 / 2))) = (1 / (√‘𝑥))) |
| 29 | 27, 28 | eqtrd 2766 | . . . . 5 ⊢ (𝑥 ∈ 𝐷 → (𝑥↑𝑐((1 / 2) − 1)) = (1 / (√‘𝑥))) |
| 30 | 29 | oveq2d 7357 | . . . 4 ⊢ (𝑥 ∈ 𝐷 → ((1 / 2) · (𝑥↑𝑐((1 / 2) − 1))) = ((1 / 2) · (1 / (√‘𝑥)))) |
| 31 | 1cnd 11102 | . . . . . 6 ⊢ (𝑥 ∈ 𝐷 → 1 ∈ ℂ) | |
| 32 | 2cnd 12198 | . . . . . 6 ⊢ (𝑥 ∈ 𝐷 → 2 ∈ ℂ) | |
| 33 | 7 | sqrtcld 15342 | . . . . . 6 ⊢ (𝑥 ∈ 𝐷 → (√‘𝑥) ∈ ℂ) |
| 34 | 2ne0 12224 | . . . . . . 7 ⊢ 2 ≠ 0 | |
| 35 | 34 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ 𝐷 → 2 ≠ 0) |
| 36 | 7 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐷 ∧ (√‘𝑥) = 0) → 𝑥 ∈ ℂ) |
| 37 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐷 ∧ (√‘𝑥) = 0) → (√‘𝑥) = 0) | |
| 38 | 36, 37 | sqr00d 15346 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐷 ∧ (√‘𝑥) = 0) → 𝑥 = 0) |
| 39 | 38 | ex 412 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐷 → ((√‘𝑥) = 0 → 𝑥 = 0)) |
| 40 | 39 | necon3d 2949 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐷 → (𝑥 ≠ 0 → (√‘𝑥) ≠ 0)) |
| 41 | 24, 40 | mpd 15 | . . . . . 6 ⊢ (𝑥 ∈ 𝐷 → (√‘𝑥) ≠ 0) |
| 42 | 31, 32, 31, 33, 35, 41 | divmuldivd 11933 | . . . . 5 ⊢ (𝑥 ∈ 𝐷 → ((1 / 2) · (1 / (√‘𝑥))) = ((1 · 1) / (2 · (√‘𝑥)))) |
| 43 | 1t1e1 12277 | . . . . . 6 ⊢ (1 · 1) = 1 | |
| 44 | 43 | oveq1i 7351 | . . . . 5 ⊢ ((1 · 1) / (2 · (√‘𝑥))) = (1 / (2 · (√‘𝑥))) |
| 45 | 42, 44 | eqtrdi 2782 | . . . 4 ⊢ (𝑥 ∈ 𝐷 → ((1 / 2) · (1 / (√‘𝑥))) = (1 / (2 · (√‘𝑥)))) |
| 46 | 30, 45 | eqtrd 2766 | . . 3 ⊢ (𝑥 ∈ 𝐷 → ((1 / 2) · (𝑥↑𝑐((1 / 2) − 1))) = (1 / (2 · (√‘𝑥)))) |
| 47 | 46 | mpteq2ia 5181 | . 2 ⊢ (𝑥 ∈ 𝐷 ↦ ((1 / 2) · (𝑥↑𝑐((1 / 2) − 1)))) = (𝑥 ∈ 𝐷 ↦ (1 / (2 · (√‘𝑥)))) |
| 48 | 4, 11, 47 | 3eqtr3i 2762 | 1 ⊢ (ℂ D (𝑥 ∈ 𝐷 ↦ (√‘𝑥))) = (𝑥 ∈ 𝐷 ↦ (1 / (2 · (√‘𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3894 ↦ cmpt 5167 ‘cfv 6476 (class class class)co 7341 ℂcc 10999 0cc0 11001 1c1 11002 + caddc 11004 · cmul 11006 -∞cmnf 11139 − cmin 11339 -cneg 11340 / cdiv 11769 2c2 12175 (,]cioc 13241 √csqrt 15135 D cdv 25786 ↑𝑐ccxp 26486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 ax-addf 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-q 12842 df-rp 12886 df-xneg 13006 df-xadd 13007 df-xmul 13008 df-ioo 13244 df-ioc 13245 df-ico 13246 df-icc 13247 df-fz 13403 df-fzo 13550 df-fl 13691 df-mod 13769 df-seq 13904 df-exp 13964 df-fac 14176 df-bc 14205 df-hash 14233 df-shft 14969 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-limsup 15373 df-clim 15390 df-rlim 15391 df-sum 15589 df-ef 15969 df-sin 15971 df-cos 15972 df-tan 15973 df-pi 15974 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-starv 17171 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-unif 17179 df-hom 17180 df-cco 17181 df-rest 17321 df-topn 17322 df-0g 17340 df-gsum 17341 df-topgen 17342 df-pt 17343 df-prds 17346 df-xrs 17401 df-qtop 17406 df-imas 17407 df-xps 17409 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-mulg 18976 df-cntz 19224 df-cmn 19689 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-fbas 21283 df-fg 21284 df-cnfld 21287 df-top 22804 df-topon 22821 df-topsp 22843 df-bases 22856 df-cld 22929 df-ntr 22930 df-cls 22931 df-nei 23008 df-lp 23046 df-perf 23047 df-cn 23137 df-cnp 23138 df-haus 23225 df-cmp 23297 df-tx 23472 df-hmeo 23665 df-fil 23756 df-fm 23848 df-flim 23849 df-flf 23850 df-xms 24230 df-ms 24231 df-tms 24232 df-cncf 24793 df-limc 25789 df-dv 25790 df-log 26487 df-cxp 26488 |
| This theorem is referenced by: dvasin 37744 |
| Copyright terms: Public domain | W3C validator |