| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvcnsqrt | Structured version Visualization version GIF version | ||
| Description: Derivative of square root function. (Contributed by Brendan Leahy, 18-Dec-2018.) |
| Ref | Expression |
|---|---|
| dvcncxp1.d | ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) |
| Ref | Expression |
|---|---|
| dvcnsqrt | ⊢ (ℂ D (𝑥 ∈ 𝐷 ↦ (√‘𝑥))) = (𝑥 ∈ 𝐷 ↦ (1 / (2 · (√‘𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfcn 12372 | . . 3 ⊢ (1 / 2) ∈ ℂ | |
| 2 | dvcncxp1.d | . . . 4 ⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) | |
| 3 | 2 | dvcncxp1 26628 | . . 3 ⊢ ((1 / 2) ∈ ℂ → (ℂ D (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐(1 / 2)))) = (𝑥 ∈ 𝐷 ↦ ((1 / 2) · (𝑥↑𝑐((1 / 2) − 1))))) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ (ℂ D (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐(1 / 2)))) = (𝑥 ∈ 𝐷 ↦ ((1 / 2) · (𝑥↑𝑐((1 / 2) − 1)))) |
| 5 | difss 4095 | . . . . . . 7 ⊢ (ℂ ∖ (-∞(,]0)) ⊆ ℂ | |
| 6 | 2, 5 | eqsstri 3990 | . . . . . 6 ⊢ 𝐷 ⊆ ℂ |
| 7 | 6 | sseli 3939 | . . . . 5 ⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ ℂ) |
| 8 | cxpsqrt 26588 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (𝑥↑𝑐(1 / 2)) = (√‘𝑥)) | |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝑥 ∈ 𝐷 → (𝑥↑𝑐(1 / 2)) = (√‘𝑥)) |
| 10 | 9 | mpteq2ia 5197 | . . 3 ⊢ (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐(1 / 2))) = (𝑥 ∈ 𝐷 ↦ (√‘𝑥)) |
| 11 | 10 | oveq2i 7380 | . 2 ⊢ (ℂ D (𝑥 ∈ 𝐷 ↦ (𝑥↑𝑐(1 / 2)))) = (ℂ D (𝑥 ∈ 𝐷 ↦ (√‘𝑥))) |
| 12 | 1p0e1 12281 | . . . . . . . . . . 11 ⊢ (1 + 0) = 1 | |
| 13 | ax-1cn 11102 | . . . . . . . . . . . 12 ⊢ 1 ∈ ℂ | |
| 14 | 2halves 12376 | . . . . . . . . . . . 12 ⊢ (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1) | |
| 15 | 13, 14 | ax-mp 5 | . . . . . . . . . . 11 ⊢ ((1 / 2) + (1 / 2)) = 1 |
| 16 | 12, 15 | eqtr4i 2755 | . . . . . . . . . 10 ⊢ (1 + 0) = ((1 / 2) + (1 / 2)) |
| 17 | 0cn 11142 | . . . . . . . . . . 11 ⊢ 0 ∈ ℂ | |
| 18 | addsubeq4 11412 | . . . . . . . . . . 11 ⊢ (((1 ∈ ℂ ∧ 0 ∈ ℂ) ∧ ((1 / 2) ∈ ℂ ∧ (1 / 2) ∈ ℂ)) → ((1 + 0) = ((1 / 2) + (1 / 2)) ↔ ((1 / 2) − 1) = (0 − (1 / 2)))) | |
| 19 | 13, 17, 1, 1, 18 | mp4an 693 | . . . . . . . . . 10 ⊢ ((1 + 0) = ((1 / 2) + (1 / 2)) ↔ ((1 / 2) − 1) = (0 − (1 / 2))) |
| 20 | 16, 19 | mpbi 230 | . . . . . . . . 9 ⊢ ((1 / 2) − 1) = (0 − (1 / 2)) |
| 21 | df-neg 11384 | . . . . . . . . 9 ⊢ -(1 / 2) = (0 − (1 / 2)) | |
| 22 | 20, 21 | eqtr4i 2755 | . . . . . . . 8 ⊢ ((1 / 2) − 1) = -(1 / 2) |
| 23 | 22 | oveq2i 7380 | . . . . . . 7 ⊢ (𝑥↑𝑐((1 / 2) − 1)) = (𝑥↑𝑐-(1 / 2)) |
| 24 | 2 | logdmn0 26525 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐷 → 𝑥 ≠ 0) |
| 25 | 1 | a1i 11 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐷 → (1 / 2) ∈ ℂ) |
| 26 | 7, 24, 25 | cxpnegd 26600 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐷 → (𝑥↑𝑐-(1 / 2)) = (1 / (𝑥↑𝑐(1 / 2)))) |
| 27 | 23, 26 | eqtrid 2776 | . . . . . 6 ⊢ (𝑥 ∈ 𝐷 → (𝑥↑𝑐((1 / 2) − 1)) = (1 / (𝑥↑𝑐(1 / 2)))) |
| 28 | 9 | oveq2d 7385 | . . . . . 6 ⊢ (𝑥 ∈ 𝐷 → (1 / (𝑥↑𝑐(1 / 2))) = (1 / (√‘𝑥))) |
| 29 | 27, 28 | eqtrd 2764 | . . . . 5 ⊢ (𝑥 ∈ 𝐷 → (𝑥↑𝑐((1 / 2) − 1)) = (1 / (√‘𝑥))) |
| 30 | 29 | oveq2d 7385 | . . . 4 ⊢ (𝑥 ∈ 𝐷 → ((1 / 2) · (𝑥↑𝑐((1 / 2) − 1))) = ((1 / 2) · (1 / (√‘𝑥)))) |
| 31 | 1cnd 11145 | . . . . . 6 ⊢ (𝑥 ∈ 𝐷 → 1 ∈ ℂ) | |
| 32 | 2cnd 12240 | . . . . . 6 ⊢ (𝑥 ∈ 𝐷 → 2 ∈ ℂ) | |
| 33 | 7 | sqrtcld 15382 | . . . . . 6 ⊢ (𝑥 ∈ 𝐷 → (√‘𝑥) ∈ ℂ) |
| 34 | 2ne0 12266 | . . . . . . 7 ⊢ 2 ≠ 0 | |
| 35 | 34 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ 𝐷 → 2 ≠ 0) |
| 36 | 7 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐷 ∧ (√‘𝑥) = 0) → 𝑥 ∈ ℂ) |
| 37 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐷 ∧ (√‘𝑥) = 0) → (√‘𝑥) = 0) | |
| 38 | 36, 37 | sqr00d 15386 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐷 ∧ (√‘𝑥) = 0) → 𝑥 = 0) |
| 39 | 38 | ex 412 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐷 → ((√‘𝑥) = 0 → 𝑥 = 0)) |
| 40 | 39 | necon3d 2946 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐷 → (𝑥 ≠ 0 → (√‘𝑥) ≠ 0)) |
| 41 | 24, 40 | mpd 15 | . . . . . 6 ⊢ (𝑥 ∈ 𝐷 → (√‘𝑥) ≠ 0) |
| 42 | 31, 32, 31, 33, 35, 41 | divmuldivd 11975 | . . . . 5 ⊢ (𝑥 ∈ 𝐷 → ((1 / 2) · (1 / (√‘𝑥))) = ((1 · 1) / (2 · (√‘𝑥)))) |
| 43 | 1t1e1 12319 | . . . . . 6 ⊢ (1 · 1) = 1 | |
| 44 | 43 | oveq1i 7379 | . . . . 5 ⊢ ((1 · 1) / (2 · (√‘𝑥))) = (1 / (2 · (√‘𝑥))) |
| 45 | 42, 44 | eqtrdi 2780 | . . . 4 ⊢ (𝑥 ∈ 𝐷 → ((1 / 2) · (1 / (√‘𝑥))) = (1 / (2 · (√‘𝑥)))) |
| 46 | 30, 45 | eqtrd 2764 | . . 3 ⊢ (𝑥 ∈ 𝐷 → ((1 / 2) · (𝑥↑𝑐((1 / 2) − 1))) = (1 / (2 · (√‘𝑥)))) |
| 47 | 46 | mpteq2ia 5197 | . 2 ⊢ (𝑥 ∈ 𝐷 ↦ ((1 / 2) · (𝑥↑𝑐((1 / 2) − 1)))) = (𝑥 ∈ 𝐷 ↦ (1 / (2 · (√‘𝑥)))) |
| 48 | 4, 11, 47 | 3eqtr3i 2760 | 1 ⊢ (ℂ D (𝑥 ∈ 𝐷 ↦ (√‘𝑥))) = (𝑥 ∈ 𝐷 ↦ (1 / (2 · (√‘𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3908 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 0cc0 11044 1c1 11045 + caddc 11047 · cmul 11049 -∞cmnf 11182 − cmin 11381 -cneg 11382 / cdiv 11811 2c2 12217 (,]cioc 13283 √csqrt 15175 D cdv 25740 ↑𝑐ccxp 26440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ioo 13286 df-ioc 13287 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-fl 13730 df-mod 13808 df-seq 13943 df-exp 14003 df-fac 14215 df-bc 14244 df-hash 14272 df-shft 15009 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-limsup 15413 df-clim 15430 df-rlim 15431 df-sum 15629 df-ef 16009 df-sin 16011 df-cos 16012 df-tan 16013 df-pi 16014 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17361 df-topn 17362 df-0g 17380 df-gsum 17381 df-topgen 17382 df-pt 17383 df-prds 17386 df-xrs 17441 df-qtop 17446 df-imas 17447 df-xps 17449 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-mulg 18976 df-cntz 19225 df-cmn 19688 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-fbas 21237 df-fg 21238 df-cnfld 21241 df-top 22757 df-topon 22774 df-topsp 22796 df-bases 22809 df-cld 22882 df-ntr 22883 df-cls 22884 df-nei 22961 df-lp 22999 df-perf 23000 df-cn 23090 df-cnp 23091 df-haus 23178 df-cmp 23250 df-tx 23425 df-hmeo 23618 df-fil 23709 df-fm 23801 df-flim 23802 df-flf 23803 df-xms 24184 df-ms 24185 df-tms 24186 df-cncf 24747 df-limc 25743 df-dv 25744 df-log 26441 df-cxp 26442 |
| This theorem is referenced by: dvasin 37671 |
| Copyright terms: Public domain | W3C validator |