MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logcnlem4 Structured version   Visualization version   GIF version

Theorem logcnlem4 25335
Description: Lemma for logcn 25337. (Contributed by Mario Carneiro, 25-Feb-2015.)
Hypotheses
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
logcnlem.s 𝑆 = if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴)))
logcnlem.t 𝑇 = ((abs‘𝐴) · (𝑅 / (1 + 𝑅)))
logcnlem.a (𝜑𝐴𝐷)
logcnlem.r (𝜑𝑅 ∈ ℝ+)
logcnlem.b (𝜑𝐵𝐷)
logcnlem.l (𝜑 → (abs‘(𝐴𝐵)) < if(𝑆𝑇, 𝑆, 𝑇))
Assertion
Ref Expression
logcnlem4 (𝜑 → (abs‘((ℑ‘(log‘𝐴)) − (ℑ‘(log‘𝐵)))) < 𝑅)

Proof of Theorem logcnlem4
StepHypRef Expression
1 logcnlem.a . . . . . . . 8 (𝜑𝐴𝐷)
2 logcn.d . . . . . . . . . 10 𝐷 = (ℂ ∖ (-∞(,]0))
32ellogdm 25329 . . . . . . . . 9 (𝐴𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)))
43simplbi 501 . . . . . . . 8 (𝐴𝐷𝐴 ∈ ℂ)
51, 4syl 17 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
62logdmn0 25330 . . . . . . . 8 (𝐴𝐷𝐴 ≠ 0)
71, 6syl 17 . . . . . . 7 (𝜑𝐴 ≠ 0)
85, 7logcld 25261 . . . . . 6 (𝜑 → (log‘𝐴) ∈ ℂ)
98imcld 14602 . . . . 5 (𝜑 → (ℑ‘(log‘𝐴)) ∈ ℝ)
109recnd 10707 . . . 4 (𝜑 → (ℑ‘(log‘𝐴)) ∈ ℂ)
11 logcnlem.b . . . . . . . 8 (𝜑𝐵𝐷)
122ellogdm 25329 . . . . . . . . 9 (𝐵𝐷 ↔ (𝐵 ∈ ℂ ∧ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ+)))
1312simplbi 501 . . . . . . . 8 (𝐵𝐷𝐵 ∈ ℂ)
1411, 13syl 17 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
152logdmn0 25330 . . . . . . . 8 (𝐵𝐷𝐵 ≠ 0)
1611, 15syl 17 . . . . . . 7 (𝜑𝐵 ≠ 0)
1714, 16logcld 25261 . . . . . 6 (𝜑 → (log‘𝐵) ∈ ℂ)
1817imcld 14602 . . . . 5 (𝜑 → (ℑ‘(log‘𝐵)) ∈ ℝ)
1918recnd 10707 . . . 4 (𝜑 → (ℑ‘(log‘𝐵)) ∈ ℂ)
2010, 19abssubd 14861 . . 3 (𝜑 → (abs‘((ℑ‘(log‘𝐴)) − (ℑ‘(log‘𝐵)))) = (abs‘((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴)))))
2117, 8imsubd 14624 . . . . 5 (𝜑 → (ℑ‘((log‘𝐵) − (log‘𝐴))) = ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))))
22 efsub 15501 . . . . . . . . . 10 (((log‘𝐵) ∈ ℂ ∧ (log‘𝐴) ∈ ℂ) → (exp‘((log‘𝐵) − (log‘𝐴))) = ((exp‘(log‘𝐵)) / (exp‘(log‘𝐴))))
2317, 8, 22syl2anc 587 . . . . . . . . 9 (𝜑 → (exp‘((log‘𝐵) − (log‘𝐴))) = ((exp‘(log‘𝐵)) / (exp‘(log‘𝐴))))
24 eflog 25267 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (exp‘(log‘𝐵)) = 𝐵)
2514, 16, 24syl2anc 587 . . . . . . . . . 10 (𝜑 → (exp‘(log‘𝐵)) = 𝐵)
26 eflog 25267 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
275, 7, 26syl2anc 587 . . . . . . . . . 10 (𝜑 → (exp‘(log‘𝐴)) = 𝐴)
2825, 27oveq12d 7168 . . . . . . . . 9 (𝜑 → ((exp‘(log‘𝐵)) / (exp‘(log‘𝐴))) = (𝐵 / 𝐴))
2923, 28eqtrd 2793 . . . . . . . 8 (𝜑 → (exp‘((log‘𝐵) − (log‘𝐴))) = (𝐵 / 𝐴))
3014, 5, 7divcld 11454 . . . . . . . . 9 (𝜑 → (𝐵 / 𝐴) ∈ ℂ)
3114, 5, 16, 7divne0d 11470 . . . . . . . . 9 (𝜑 → (𝐵 / 𝐴) ≠ 0)
3217, 8subcld 11035 . . . . . . . . . 10 (𝜑 → ((log‘𝐵) − (log‘𝐴)) ∈ ℂ)
33 logcnlem.s . . . . . . . . . . . . 13 𝑆 = if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴)))
34 logcnlem.t . . . . . . . . . . . . 13 𝑇 = ((abs‘𝐴) · (𝑅 / (1 + 𝑅)))
35 logcnlem.r . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℝ+)
36 logcnlem.l . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝐴𝐵)) < if(𝑆𝑇, 𝑆, 𝑇))
372, 33, 34, 1, 35, 11, 36logcnlem3 25334 . . . . . . . . . . . 12 (𝜑 → (-π < ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ∧ ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ≤ π))
3837simpld 498 . . . . . . . . . . 11 (𝜑 → -π < ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))))
3938, 21breqtrrd 5060 . . . . . . . . . 10 (𝜑 → -π < (ℑ‘((log‘𝐵) − (log‘𝐴))))
4037simprd 499 . . . . . . . . . . 11 (𝜑 → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ≤ π)
4121, 40eqbrtrd 5054 . . . . . . . . . 10 (𝜑 → (ℑ‘((log‘𝐵) − (log‘𝐴))) ≤ π)
42 ellogrn 25250 . . . . . . . . . 10 (((log‘𝐵) − (log‘𝐴)) ∈ ran log ↔ (((log‘𝐵) − (log‘𝐴)) ∈ ℂ ∧ -π < (ℑ‘((log‘𝐵) − (log‘𝐴))) ∧ (ℑ‘((log‘𝐵) − (log‘𝐴))) ≤ π))
4332, 39, 41, 42syl3anbrc 1340 . . . . . . . . 9 (𝜑 → ((log‘𝐵) − (log‘𝐴)) ∈ ran log)
44 logeftb 25274 . . . . . . . . 9 (((𝐵 / 𝐴) ∈ ℂ ∧ (𝐵 / 𝐴) ≠ 0 ∧ ((log‘𝐵) − (log‘𝐴)) ∈ ran log) → ((log‘(𝐵 / 𝐴)) = ((log‘𝐵) − (log‘𝐴)) ↔ (exp‘((log‘𝐵) − (log‘𝐴))) = (𝐵 / 𝐴)))
4530, 31, 43, 44syl3anc 1368 . . . . . . . 8 (𝜑 → ((log‘(𝐵 / 𝐴)) = ((log‘𝐵) − (log‘𝐴)) ↔ (exp‘((log‘𝐵) − (log‘𝐴))) = (𝐵 / 𝐴)))
4629, 45mpbird 260 . . . . . . 7 (𝜑 → (log‘(𝐵 / 𝐴)) = ((log‘𝐵) − (log‘𝐴)))
4746eqcomd 2764 . . . . . 6 (𝜑 → ((log‘𝐵) − (log‘𝐴)) = (log‘(𝐵 / 𝐴)))
4847fveq2d 6662 . . . . 5 (𝜑 → (ℑ‘((log‘𝐵) − (log‘𝐴))) = (ℑ‘(log‘(𝐵 / 𝐴))))
4921, 48eqtr3d 2795 . . . 4 (𝜑 → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) = (ℑ‘(log‘(𝐵 / 𝐴))))
5049fveq2d 6662 . . 3 (𝜑 → (abs‘((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴)))) = (abs‘(ℑ‘(log‘(𝐵 / 𝐴)))))
5120, 50eqtrd 2793 . 2 (𝜑 → (abs‘((ℑ‘(log‘𝐴)) − (ℑ‘(log‘𝐵)))) = (abs‘(ℑ‘(log‘(𝐵 / 𝐴)))))
5230, 31logcld 25261 . . . . . 6 (𝜑 → (log‘(𝐵 / 𝐴)) ∈ ℂ)
5352imcld 14602 . . . . 5 (𝜑 → (ℑ‘(log‘(𝐵 / 𝐴))) ∈ ℝ)
5453recnd 10707 . . . 4 (𝜑 → (ℑ‘(log‘(𝐵 / 𝐴))) ∈ ℂ)
5554abscld 14844 . . 3 (𝜑 → (abs‘(ℑ‘(log‘(𝐵 / 𝐴)))) ∈ ℝ)
56 0red 10682 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
57 1re 10679 . . . . . . . . . . 11 1 ∈ ℝ
585, 14subcld 11035 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐵) ∈ ℂ)
5958abscld 14844 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴𝐵)) ∈ ℝ)
605, 7absrpcld 14856 . . . . . . . . . . . 12 (𝜑 → (abs‘𝐴) ∈ ℝ+)
6159, 60rerpdivcld 12503 . . . . . . . . . . 11 (𝜑 → ((abs‘(𝐴𝐵)) / (abs‘𝐴)) ∈ ℝ)
62 resubcl 10988 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ ((abs‘(𝐴𝐵)) / (abs‘𝐴)) ∈ ℝ) → (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴))) ∈ ℝ)
6357, 61, 62sylancr 590 . . . . . . . . . 10 (𝜑 → (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴))) ∈ ℝ)
6430recld 14601 . . . . . . . . . 10 (𝜑 → (ℜ‘(𝐵 / 𝐴)) ∈ ℝ)
655abscld 14844 . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘𝐴) ∈ ℝ)
6635rpred 12472 . . . . . . . . . . . . . . . . 17 (𝜑𝑅 ∈ ℝ)
67 1rp 12434 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ+
68 rpaddcl 12452 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ+𝑅 ∈ ℝ+) → (1 + 𝑅) ∈ ℝ+)
6967, 35, 68sylancr 590 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 + 𝑅) ∈ ℝ+)
7066, 69rerpdivcld 12503 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑅 / (1 + 𝑅)) ∈ ℝ)
7165, 70remulcld 10709 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) ∈ ℝ)
7234, 71eqeltrid 2856 . . . . . . . . . . . . . 14 (𝜑𝑇 ∈ ℝ)
73 rpre 12438 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
7473adantl 485 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐴 ∈ ℝ+) → 𝐴 ∈ ℝ)
755imcld 14602 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (ℑ‘𝐴) ∈ ℝ)
7675recnd 10707 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (ℑ‘𝐴) ∈ ℂ)
7776abscld 14844 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (abs‘(ℑ‘𝐴)) ∈ ℝ)
7877adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ+) → (abs‘(ℑ‘𝐴)) ∈ ℝ)
7974, 78ifclda 4455 . . . . . . . . . . . . . . . . . 18 (𝜑 → if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴))) ∈ ℝ)
8033, 79eqeltrid 2856 . . . . . . . . . . . . . . . . 17 (𝜑𝑆 ∈ ℝ)
81 ltmin 12628 . . . . . . . . . . . . . . . . 17 (((abs‘(𝐴𝐵)) ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑇 ∈ ℝ) → ((abs‘(𝐴𝐵)) < if(𝑆𝑇, 𝑆, 𝑇) ↔ ((abs‘(𝐴𝐵)) < 𝑆 ∧ (abs‘(𝐴𝐵)) < 𝑇)))
8259, 80, 72, 81syl3anc 1368 . . . . . . . . . . . . . . . 16 (𝜑 → ((abs‘(𝐴𝐵)) < if(𝑆𝑇, 𝑆, 𝑇) ↔ ((abs‘(𝐴𝐵)) < 𝑆 ∧ (abs‘(𝐴𝐵)) < 𝑇)))
8336, 82mpbid 235 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘(𝐴𝐵)) < 𝑆 ∧ (abs‘(𝐴𝐵)) < 𝑇))
8483simprd 499 . . . . . . . . . . . . . 14 (𝜑 → (abs‘(𝐴𝐵)) < 𝑇)
8569rpred 12472 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 + 𝑅) ∈ ℝ)
8666ltp1d 11608 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑅 < (𝑅 + 1))
8766recnd 10707 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑅 ∈ ℂ)
88 ax-1cn 10633 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℂ
89 addcom 10864 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑅 + 1) = (1 + 𝑅))
9087, 88, 89sylancl 589 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑅 + 1) = (1 + 𝑅))
9186, 90breqtrd 5058 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑅 < (1 + 𝑅))
9266, 85, 91ltled 10826 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑅 ≤ (1 + 𝑅))
9385recnd 10707 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 + 𝑅) ∈ ℂ)
9493mulid1d 10696 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1 + 𝑅) · 1) = (1 + 𝑅))
9592, 94breqtrrd 5060 . . . . . . . . . . . . . . . . . 18 (𝜑𝑅 ≤ ((1 + 𝑅) · 1))
9657a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 1 ∈ ℝ)
9766, 96, 69ledivmuld 12525 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑅 / (1 + 𝑅)) ≤ 1 ↔ 𝑅 ≤ ((1 + 𝑅) · 1)))
9895, 97mpbird 260 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑅 / (1 + 𝑅)) ≤ 1)
9970, 96, 60lemul2d 12516 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑅 / (1 + 𝑅)) ≤ 1 ↔ ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) ≤ ((abs‘𝐴) · 1)))
10098, 99mpbid 235 . . . . . . . . . . . . . . . 16 (𝜑 → ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) ≤ ((abs‘𝐴) · 1))
10165recnd 10707 . . . . . . . . . . . . . . . . 17 (𝜑 → (abs‘𝐴) ∈ ℂ)
102101mulid1d 10696 . . . . . . . . . . . . . . . 16 (𝜑 → ((abs‘𝐴) · 1) = (abs‘𝐴))
103100, 102breqtrd 5058 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) ≤ (abs‘𝐴))
10434, 103eqbrtrid 5067 . . . . . . . . . . . . . 14 (𝜑𝑇 ≤ (abs‘𝐴))
10559, 72, 65, 84, 104ltletrd 10838 . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝐴𝐵)) < (abs‘𝐴))
106105, 102breqtrrd 5060 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴𝐵)) < ((abs‘𝐴) · 1))
10759, 96, 60ltdivmuld 12523 . . . . . . . . . . . 12 (𝜑 → (((abs‘(𝐴𝐵)) / (abs‘𝐴)) < 1 ↔ (abs‘(𝐴𝐵)) < ((abs‘𝐴) · 1)))
108106, 107mpbird 260 . . . . . . . . . . 11 (𝜑 → ((abs‘(𝐴𝐵)) / (abs‘𝐴)) < 1)
109 posdif 11171 . . . . . . . . . . . 12 ((((abs‘(𝐴𝐵)) / (abs‘𝐴)) ∈ ℝ ∧ 1 ∈ ℝ) → (((abs‘(𝐴𝐵)) / (abs‘𝐴)) < 1 ↔ 0 < (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴)))))
11061, 57, 109sylancl 589 . . . . . . . . . . 11 (𝜑 → (((abs‘(𝐴𝐵)) / (abs‘𝐴)) < 1 ↔ 0 < (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴)))))
111108, 110mpbid 235 . . . . . . . . . 10 (𝜑 → 0 < (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴))))
11258, 5, 7divcld 11454 . . . . . . . . . . . . 13 (𝜑 → ((𝐴𝐵) / 𝐴) ∈ ℂ)
113112releabsd 14859 . . . . . . . . . . . 12 (𝜑 → (ℜ‘((𝐴𝐵) / 𝐴)) ≤ (abs‘((𝐴𝐵) / 𝐴)))
1145, 14, 5, 7divsubdird 11493 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴𝐵) / 𝐴) = ((𝐴 / 𝐴) − (𝐵 / 𝐴)))
1155, 7dividd 11452 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 / 𝐴) = 1)
116115oveq1d 7165 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴 / 𝐴) − (𝐵 / 𝐴)) = (1 − (𝐵 / 𝐴)))
117114, 116eqtrd 2793 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴𝐵) / 𝐴) = (1 − (𝐵 / 𝐴)))
118117fveq2d 6662 . . . . . . . . . . . . . 14 (𝜑 → (ℜ‘((𝐴𝐵) / 𝐴)) = (ℜ‘(1 − (𝐵 / 𝐴))))
119 resub 14534 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ (𝐵 / 𝐴) ∈ ℂ) → (ℜ‘(1 − (𝐵 / 𝐴))) = ((ℜ‘1) − (ℜ‘(𝐵 / 𝐴))))
12088, 30, 119sylancr 590 . . . . . . . . . . . . . 14 (𝜑 → (ℜ‘(1 − (𝐵 / 𝐴))) = ((ℜ‘1) − (ℜ‘(𝐵 / 𝐴))))
121118, 120eqtrd 2793 . . . . . . . . . . . . 13 (𝜑 → (ℜ‘((𝐴𝐵) / 𝐴)) = ((ℜ‘1) − (ℜ‘(𝐵 / 𝐴))))
122 re1 14561 . . . . . . . . . . . . . 14 (ℜ‘1) = 1
123122oveq1i 7160 . . . . . . . . . . . . 13 ((ℜ‘1) − (ℜ‘(𝐵 / 𝐴))) = (1 − (ℜ‘(𝐵 / 𝐴)))
124121, 123eqtrdi 2809 . . . . . . . . . . . 12 (𝜑 → (ℜ‘((𝐴𝐵) / 𝐴)) = (1 − (ℜ‘(𝐵 / 𝐴))))
12558, 5, 7absdivd 14863 . . . . . . . . . . . 12 (𝜑 → (abs‘((𝐴𝐵) / 𝐴)) = ((abs‘(𝐴𝐵)) / (abs‘𝐴)))
126113, 124, 1253brtr3d 5063 . . . . . . . . . . 11 (𝜑 → (1 − (ℜ‘(𝐵 / 𝐴))) ≤ ((abs‘(𝐴𝐵)) / (abs‘𝐴)))
12796, 64, 61, 126subled 11281 . . . . . . . . . 10 (𝜑 → (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴))) ≤ (ℜ‘(𝐵 / 𝐴)))
12856, 63, 64, 111, 127ltletrd 10838 . . . . . . . . 9 (𝜑 → 0 < (ℜ‘(𝐵 / 𝐴)))
129 argregt0 25300 . . . . . . . . 9 (((𝐵 / 𝐴) ∈ ℂ ∧ 0 < (ℜ‘(𝐵 / 𝐴))) → (ℑ‘(log‘(𝐵 / 𝐴))) ∈ (-(π / 2)(,)(π / 2)))
13030, 128, 129syl2anc 587 . . . . . . . 8 (𝜑 → (ℑ‘(log‘(𝐵 / 𝐴))) ∈ (-(π / 2)(,)(π / 2)))
131 cosq14gt0 25202 . . . . . . . 8 ((ℑ‘(log‘(𝐵 / 𝐴))) ∈ (-(π / 2)(,)(π / 2)) → 0 < (cos‘(ℑ‘(log‘(𝐵 / 𝐴)))))
132130, 131syl 17 . . . . . . 7 (𝜑 → 0 < (cos‘(ℑ‘(log‘(𝐵 / 𝐴)))))
133132gt0ne0d 11242 . . . . . 6 (𝜑 → (cos‘(ℑ‘(log‘(𝐵 / 𝐴)))) ≠ 0)
13453, 133retancld 15546 . . . . 5 (𝜑 → (tan‘(ℑ‘(log‘(𝐵 / 𝐴)))) ∈ ℝ)
135134recnd 10707 . . . 4 (𝜑 → (tan‘(ℑ‘(log‘(𝐵 / 𝐴)))) ∈ ℂ)
136135abscld 14844 . . 3 (𝜑 → (abs‘(tan‘(ℑ‘(log‘(𝐵 / 𝐴))))) ∈ ℝ)
137 tanabsge 25198 . . . 4 ((ℑ‘(log‘(𝐵 / 𝐴))) ∈ (-(π / 2)(,)(π / 2)) → (abs‘(ℑ‘(log‘(𝐵 / 𝐴)))) ≤ (abs‘(tan‘(ℑ‘(log‘(𝐵 / 𝐴))))))
138130, 137syl 17 . . 3 (𝜑 → (abs‘(ℑ‘(log‘(𝐵 / 𝐴)))) ≤ (abs‘(tan‘(ℑ‘(log‘(𝐵 / 𝐴))))))
139128gt0ne0d 11242 . . . . . . 7 (𝜑 → (ℜ‘(𝐵 / 𝐴)) ≠ 0)
140 tanarg 25309 . . . . . . 7 (((𝐵 / 𝐴) ∈ ℂ ∧ (ℜ‘(𝐵 / 𝐴)) ≠ 0) → (tan‘(ℑ‘(log‘(𝐵 / 𝐴)))) = ((ℑ‘(𝐵 / 𝐴)) / (ℜ‘(𝐵 / 𝐴))))
14130, 139, 140syl2anc 587 . . . . . 6 (𝜑 → (tan‘(ℑ‘(log‘(𝐵 / 𝐴)))) = ((ℑ‘(𝐵 / 𝐴)) / (ℜ‘(𝐵 / 𝐴))))
142141fveq2d 6662 . . . . 5 (𝜑 → (abs‘(tan‘(ℑ‘(log‘(𝐵 / 𝐴))))) = (abs‘((ℑ‘(𝐵 / 𝐴)) / (ℜ‘(𝐵 / 𝐴)))))
14330imcld 14602 . . . . . . 7 (𝜑 → (ℑ‘(𝐵 / 𝐴)) ∈ ℝ)
144143recnd 10707 . . . . . 6 (𝜑 → (ℑ‘(𝐵 / 𝐴)) ∈ ℂ)
14564recnd 10707 . . . . . 6 (𝜑 → (ℜ‘(𝐵 / 𝐴)) ∈ ℂ)
146144, 145, 139absdivd 14863 . . . . 5 (𝜑 → (abs‘((ℑ‘(𝐵 / 𝐴)) / (ℜ‘(𝐵 / 𝐴)))) = ((abs‘(ℑ‘(𝐵 / 𝐴))) / (abs‘(ℜ‘(𝐵 / 𝐴)))))
14756, 64, 128ltled 10826 . . . . . . 7 (𝜑 → 0 ≤ (ℜ‘(𝐵 / 𝐴)))
14864, 147absidd 14830 . . . . . 6 (𝜑 → (abs‘(ℜ‘(𝐵 / 𝐴))) = (ℜ‘(𝐵 / 𝐴)))
149148oveq2d 7166 . . . . 5 (𝜑 → ((abs‘(ℑ‘(𝐵 / 𝐴))) / (abs‘(ℜ‘(𝐵 / 𝐴)))) = ((abs‘(ℑ‘(𝐵 / 𝐴))) / (ℜ‘(𝐵 / 𝐴))))
150142, 146, 1493eqtrd 2797 . . . 4 (𝜑 → (abs‘(tan‘(ℑ‘(log‘(𝐵 / 𝐴))))) = ((abs‘(ℑ‘(𝐵 / 𝐴))) / (ℜ‘(𝐵 / 𝐴))))
151144abscld 14844 . . . . . 6 (𝜑 → (abs‘(ℑ‘(𝐵 / 𝐴))) ∈ ℝ)
15264, 66remulcld 10709 . . . . . 6 (𝜑 → ((ℜ‘(𝐵 / 𝐴)) · 𝑅) ∈ ℝ)
15314, 5subcld 11035 . . . . . . . . 9 (𝜑 → (𝐵𝐴) ∈ ℂ)
154153, 5, 7divcld 11454 . . . . . . . 8 (𝜑 → ((𝐵𝐴) / 𝐴) ∈ ℂ)
155 absimle 14717 . . . . . . . 8 (((𝐵𝐴) / 𝐴) ∈ ℂ → (abs‘(ℑ‘((𝐵𝐴) / 𝐴))) ≤ (abs‘((𝐵𝐴) / 𝐴)))
156154, 155syl 17 . . . . . . 7 (𝜑 → (abs‘(ℑ‘((𝐵𝐴) / 𝐴))) ≤ (abs‘((𝐵𝐴) / 𝐴)))
15714, 5, 5, 7divsubdird 11493 . . . . . . . . . . 11 (𝜑 → ((𝐵𝐴) / 𝐴) = ((𝐵 / 𝐴) − (𝐴 / 𝐴)))
158115oveq2d 7166 . . . . . . . . . . 11 (𝜑 → ((𝐵 / 𝐴) − (𝐴 / 𝐴)) = ((𝐵 / 𝐴) − 1))
159157, 158eqtrd 2793 . . . . . . . . . 10 (𝜑 → ((𝐵𝐴) / 𝐴) = ((𝐵 / 𝐴) − 1))
160159fveq2d 6662 . . . . . . . . 9 (𝜑 → (ℑ‘((𝐵𝐴) / 𝐴)) = (ℑ‘((𝐵 / 𝐴) − 1)))
161 imsub 14542 . . . . . . . . . . 11 (((𝐵 / 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (ℑ‘((𝐵 / 𝐴) − 1)) = ((ℑ‘(𝐵 / 𝐴)) − (ℑ‘1)))
16230, 88, 161sylancl 589 . . . . . . . . . 10 (𝜑 → (ℑ‘((𝐵 / 𝐴) − 1)) = ((ℑ‘(𝐵 / 𝐴)) − (ℑ‘1)))
163 im1 14562 . . . . . . . . . . 11 (ℑ‘1) = 0
164163oveq2i 7161 . . . . . . . . . 10 ((ℑ‘(𝐵 / 𝐴)) − (ℑ‘1)) = ((ℑ‘(𝐵 / 𝐴)) − 0)
165162, 164eqtrdi 2809 . . . . . . . . 9 (𝜑 → (ℑ‘((𝐵 / 𝐴) − 1)) = ((ℑ‘(𝐵 / 𝐴)) − 0))
166144subid1d 11024 . . . . . . . . 9 (𝜑 → ((ℑ‘(𝐵 / 𝐴)) − 0) = (ℑ‘(𝐵 / 𝐴)))
167160, 165, 1663eqtrrd 2798 . . . . . . . 8 (𝜑 → (ℑ‘(𝐵 / 𝐴)) = (ℑ‘((𝐵𝐴) / 𝐴)))
168167fveq2d 6662 . . . . . . 7 (𝜑 → (abs‘(ℑ‘(𝐵 / 𝐴))) = (abs‘(ℑ‘((𝐵𝐴) / 𝐴))))
1695, 14abssubd 14861 . . . . . . . . 9 (𝜑 → (abs‘(𝐴𝐵)) = (abs‘(𝐵𝐴)))
170169oveq1d 7165 . . . . . . . 8 (𝜑 → ((abs‘(𝐴𝐵)) / (abs‘𝐴)) = ((abs‘(𝐵𝐴)) / (abs‘𝐴)))
171153, 5, 7absdivd 14863 . . . . . . . 8 (𝜑 → (abs‘((𝐵𝐴) / 𝐴)) = ((abs‘(𝐵𝐴)) / (abs‘𝐴)))
172170, 171eqtr4d 2796 . . . . . . 7 (𝜑 → ((abs‘(𝐴𝐵)) / (abs‘𝐴)) = (abs‘((𝐵𝐴) / 𝐴)))
173156, 168, 1723brtr4d 5064 . . . . . 6 (𝜑 → (abs‘(ℑ‘(𝐵 / 𝐴))) ≤ ((abs‘(𝐴𝐵)) / (abs‘𝐴)))
17465, 59resubcld 11106 . . . . . . . . 9 (𝜑 → ((abs‘𝐴) − (abs‘(𝐴𝐵))) ∈ ℝ)
175174, 66remulcld 10709 . . . . . . . 8 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) · 𝑅) ∈ ℝ)
17665, 152remulcld 10709 . . . . . . . 8 (𝜑 → ((abs‘𝐴) · ((ℜ‘(𝐵 / 𝐴)) · 𝑅)) ∈ ℝ)
17759recnd 10707 . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝐴𝐵)) ∈ ℂ)
17888a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℂ)
179177, 178, 87adddid 10703 . . . . . . . . . . . 12 (𝜑 → ((abs‘(𝐴𝐵)) · (1 + 𝑅)) = (((abs‘(𝐴𝐵)) · 1) + ((abs‘(𝐴𝐵)) · 𝑅)))
180177mulid1d 10696 . . . . . . . . . . . . 13 (𝜑 → ((abs‘(𝐴𝐵)) · 1) = (abs‘(𝐴𝐵)))
181180oveq1d 7165 . . . . . . . . . . . 12 (𝜑 → (((abs‘(𝐴𝐵)) · 1) + ((abs‘(𝐴𝐵)) · 𝑅)) = ((abs‘(𝐴𝐵)) + ((abs‘(𝐴𝐵)) · 𝑅)))
182179, 181eqtrd 2793 . . . . . . . . . . 11 (𝜑 → ((abs‘(𝐴𝐵)) · (1 + 𝑅)) = ((abs‘(𝐴𝐵)) + ((abs‘(𝐴𝐵)) · 𝑅)))
18369rpne0d 12477 . . . . . . . . . . . . . . 15 (𝜑 → (1 + 𝑅) ≠ 0)
184101, 87, 93, 183divassd 11489 . . . . . . . . . . . . . 14 (𝜑 → (((abs‘𝐴) · 𝑅) / (1 + 𝑅)) = ((abs‘𝐴) · (𝑅 / (1 + 𝑅))))
185184, 34eqtr4di 2811 . . . . . . . . . . . . 13 (𝜑 → (((abs‘𝐴) · 𝑅) / (1 + 𝑅)) = 𝑇)
18684, 185breqtrrd 5060 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴𝐵)) < (((abs‘𝐴) · 𝑅) / (1 + 𝑅)))
18765, 66remulcld 10709 . . . . . . . . . . . . 13 (𝜑 → ((abs‘𝐴) · 𝑅) ∈ ℝ)
18859, 187, 69ltmuldivd 12519 . . . . . . . . . . . 12 (𝜑 → (((abs‘(𝐴𝐵)) · (1 + 𝑅)) < ((abs‘𝐴) · 𝑅) ↔ (abs‘(𝐴𝐵)) < (((abs‘𝐴) · 𝑅) / (1 + 𝑅))))
189186, 188mpbird 260 . . . . . . . . . . 11 (𝜑 → ((abs‘(𝐴𝐵)) · (1 + 𝑅)) < ((abs‘𝐴) · 𝑅))
190182, 189eqbrtrrd 5056 . . . . . . . . . 10 (𝜑 → ((abs‘(𝐴𝐵)) + ((abs‘(𝐴𝐵)) · 𝑅)) < ((abs‘𝐴) · 𝑅))
19159, 66remulcld 10709 . . . . . . . . . . 11 (𝜑 → ((abs‘(𝐴𝐵)) · 𝑅) ∈ ℝ)
19259, 191, 187ltaddsubd 11278 . . . . . . . . . 10 (𝜑 → (((abs‘(𝐴𝐵)) + ((abs‘(𝐴𝐵)) · 𝑅)) < ((abs‘𝐴) · 𝑅) ↔ (abs‘(𝐴𝐵)) < (((abs‘𝐴) · 𝑅) − ((abs‘(𝐴𝐵)) · 𝑅))))
193190, 192mpbid 235 . . . . . . . . 9 (𝜑 → (abs‘(𝐴𝐵)) < (((abs‘𝐴) · 𝑅) − ((abs‘(𝐴𝐵)) · 𝑅)))
194101, 177, 87subdird 11135 . . . . . . . . 9 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) · 𝑅) = (((abs‘𝐴) · 𝑅) − ((abs‘(𝐴𝐵)) · 𝑅)))
195193, 194breqtrrd 5060 . . . . . . . 8 (𝜑 → (abs‘(𝐴𝐵)) < (((abs‘𝐴) − (abs‘(𝐴𝐵))) · 𝑅))
19660rpne0d 12477 . . . . . . . . . . . . . 14 (𝜑 → (abs‘𝐴) ≠ 0)
197101, 177, 101, 196divsubdird 11493 . . . . . . . . . . . . 13 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) / (abs‘𝐴)) = (((abs‘𝐴) / (abs‘𝐴)) − ((abs‘(𝐴𝐵)) / (abs‘𝐴))))
198101, 196dividd 11452 . . . . . . . . . . . . . 14 (𝜑 → ((abs‘𝐴) / (abs‘𝐴)) = 1)
199198oveq1d 7165 . . . . . . . . . . . . 13 (𝜑 → (((abs‘𝐴) / (abs‘𝐴)) − ((abs‘(𝐴𝐵)) / (abs‘𝐴))) = (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴))))
200197, 199eqtrd 2793 . . . . . . . . . . . 12 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) / (abs‘𝐴)) = (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴))))
201200, 127eqbrtrd 5054 . . . . . . . . . . 11 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) / (abs‘𝐴)) ≤ (ℜ‘(𝐵 / 𝐴)))
202174, 64, 60ledivmuld 12525 . . . . . . . . . . 11 (𝜑 → ((((abs‘𝐴) − (abs‘(𝐴𝐵))) / (abs‘𝐴)) ≤ (ℜ‘(𝐵 / 𝐴)) ↔ ((abs‘𝐴) − (abs‘(𝐴𝐵))) ≤ ((abs‘𝐴) · (ℜ‘(𝐵 / 𝐴)))))
203201, 202mpbid 235 . . . . . . . . . 10 (𝜑 → ((abs‘𝐴) − (abs‘(𝐴𝐵))) ≤ ((abs‘𝐴) · (ℜ‘(𝐵 / 𝐴))))
20465, 64remulcld 10709 . . . . . . . . . . 11 (𝜑 → ((abs‘𝐴) · (ℜ‘(𝐵 / 𝐴))) ∈ ℝ)
205174, 204, 35lemul1d 12515 . . . . . . . . . 10 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) ≤ ((abs‘𝐴) · (ℜ‘(𝐵 / 𝐴))) ↔ (((abs‘𝐴) − (abs‘(𝐴𝐵))) · 𝑅) ≤ (((abs‘𝐴) · (ℜ‘(𝐵 / 𝐴))) · 𝑅)))
206203, 205mpbid 235 . . . . . . . . 9 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) · 𝑅) ≤ (((abs‘𝐴) · (ℜ‘(𝐵 / 𝐴))) · 𝑅))
207101, 145, 87mulassd 10702 . . . . . . . . 9 (𝜑 → (((abs‘𝐴) · (ℜ‘(𝐵 / 𝐴))) · 𝑅) = ((abs‘𝐴) · ((ℜ‘(𝐵 / 𝐴)) · 𝑅)))
208206, 207breqtrd 5058 . . . . . . . 8 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) · 𝑅) ≤ ((abs‘𝐴) · ((ℜ‘(𝐵 / 𝐴)) · 𝑅)))
20959, 175, 176, 195, 208ltletrd 10838 . . . . . . 7 (𝜑 → (abs‘(𝐴𝐵)) < ((abs‘𝐴) · ((ℜ‘(𝐵 / 𝐴)) · 𝑅)))
21059, 152, 60ltdivmuld 12523 . . . . . . 7 (𝜑 → (((abs‘(𝐴𝐵)) / (abs‘𝐴)) < ((ℜ‘(𝐵 / 𝐴)) · 𝑅) ↔ (abs‘(𝐴𝐵)) < ((abs‘𝐴) · ((ℜ‘(𝐵 / 𝐴)) · 𝑅))))
211209, 210mpbird 260 . . . . . 6 (𝜑 → ((abs‘(𝐴𝐵)) / (abs‘𝐴)) < ((ℜ‘(𝐵 / 𝐴)) · 𝑅))
212151, 61, 152, 173, 211lelttrd 10836 . . . . 5 (𝜑 → (abs‘(ℑ‘(𝐵 / 𝐴))) < ((ℜ‘(𝐵 / 𝐴)) · 𝑅))
213 ltdivmul 11553 . . . . . 6 (((abs‘(ℑ‘(𝐵 / 𝐴))) ∈ ℝ ∧ 𝑅 ∈ ℝ ∧ ((ℜ‘(𝐵 / 𝐴)) ∈ ℝ ∧ 0 < (ℜ‘(𝐵 / 𝐴)))) → (((abs‘(ℑ‘(𝐵 / 𝐴))) / (ℜ‘(𝐵 / 𝐴))) < 𝑅 ↔ (abs‘(ℑ‘(𝐵 / 𝐴))) < ((ℜ‘(𝐵 / 𝐴)) · 𝑅)))
214151, 66, 64, 128, 213syl112anc 1371 . . . . 5 (𝜑 → (((abs‘(ℑ‘(𝐵 / 𝐴))) / (ℜ‘(𝐵 / 𝐴))) < 𝑅 ↔ (abs‘(ℑ‘(𝐵 / 𝐴))) < ((ℜ‘(𝐵 / 𝐴)) · 𝑅)))
215212, 214mpbird 260 . . . 4 (𝜑 → ((abs‘(ℑ‘(𝐵 / 𝐴))) / (ℜ‘(𝐵 / 𝐴))) < 𝑅)
216150, 215eqbrtrd 5054 . . 3 (𝜑 → (abs‘(tan‘(ℑ‘(log‘(𝐵 / 𝐴))))) < 𝑅)
21755, 136, 66, 138, 216lelttrd 10836 . 2 (𝜑 → (abs‘(ℑ‘(log‘(𝐵 / 𝐴)))) < 𝑅)
21851, 217eqbrtrd 5054 1 (𝜑 → (abs‘((ℑ‘(log‘𝐴)) − (ℑ‘(log‘𝐵)))) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2951  cdif 3855  ifcif 4420   class class class wbr 5032  ran crn 5525  cfv 6335  (class class class)co 7150  cc 10573  cr 10574  0cc0 10575  1c1 10576   + caddc 10578   · cmul 10580  -∞cmnf 10711   < clt 10713  cle 10714  cmin 10908  -cneg 10909   / cdiv 11335  2c2 11729  +crp 12430  (,)cioo 12779  (,]cioc 12780  cre 14504  cim 14505  abscabs 14641  expce 15463  cosccos 15466  tanctan 15467  πcpi 15468  logclog 25245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653  ax-addf 10654  ax-mulf 10655
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7405  df-om 7580  df-1st 7693  df-2nd 7694  df-supp 7836  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-er 8299  df-map 8418  df-pm 8419  df-ixp 8480  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-fsupp 8867  df-fi 8908  df-sup 8939  df-inf 8940  df-oi 9007  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-q 12389  df-rp 12431  df-xneg 12548  df-xadd 12549  df-xmul 12550  df-ioo 12783  df-ioc 12784  df-ico 12785  df-icc 12786  df-fz 12940  df-fzo 13083  df-fl 13211  df-mod 13287  df-seq 13419  df-exp 13480  df-fac 13684  df-bc 13713  df-hash 13741  df-shft 14474  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-limsup 14876  df-clim 14893  df-rlim 14894  df-sum 15091  df-ef 15469  df-sin 15471  df-cos 15472  df-tan 15473  df-pi 15474  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-starv 16638  df-sca 16639  df-vsca 16640  df-ip 16641  df-tset 16642  df-ple 16643  df-ds 16645  df-unif 16646  df-hom 16647  df-cco 16648  df-rest 16754  df-topn 16755  df-0g 16773  df-gsum 16774  df-topgen 16775  df-pt 16776  df-prds 16779  df-xrs 16833  df-qtop 16838  df-imas 16839  df-xps 16841  df-mre 16915  df-mrc 16916  df-acs 16918  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-submnd 18023  df-mulg 18292  df-cntz 18514  df-cmn 18975  df-psmet 20158  df-xmet 20159  df-met 20160  df-bl 20161  df-mopn 20162  df-fbas 20163  df-fg 20164  df-cnfld 20167  df-top 21594  df-topon 21611  df-topsp 21633  df-bases 21646  df-cld 21719  df-ntr 21720  df-cls 21721  df-nei 21798  df-lp 21836  df-perf 21837  df-cn 21927  df-cnp 21928  df-haus 22015  df-tx 22262  df-hmeo 22455  df-fil 22546  df-fm 22638  df-flim 22639  df-flf 22640  df-xms 23022  df-ms 23023  df-tms 23024  df-cncf 23579  df-limc 24565  df-dv 24566  df-log 25247
This theorem is referenced by:  logcnlem5  25336
  Copyright terms: Public domain W3C validator