MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logcnlem4 Structured version   Visualization version   GIF version

Theorem logcnlem4 25143
Description: Lemma for logcn 25145. (Contributed by Mario Carneiro, 25-Feb-2015.)
Hypotheses
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
logcnlem.s 𝑆 = if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴)))
logcnlem.t 𝑇 = ((abs‘𝐴) · (𝑅 / (1 + 𝑅)))
logcnlem.a (𝜑𝐴𝐷)
logcnlem.r (𝜑𝑅 ∈ ℝ+)
logcnlem.b (𝜑𝐵𝐷)
logcnlem.l (𝜑 → (abs‘(𝐴𝐵)) < if(𝑆𝑇, 𝑆, 𝑇))
Assertion
Ref Expression
logcnlem4 (𝜑 → (abs‘((ℑ‘(log‘𝐴)) − (ℑ‘(log‘𝐵)))) < 𝑅)

Proof of Theorem logcnlem4
StepHypRef Expression
1 logcnlem.a . . . . . . . 8 (𝜑𝐴𝐷)
2 logcn.d . . . . . . . . . 10 𝐷 = (ℂ ∖ (-∞(,]0))
32ellogdm 25137 . . . . . . . . 9 (𝐴𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)))
43simplbi 498 . . . . . . . 8 (𝐴𝐷𝐴 ∈ ℂ)
51, 4syl 17 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
62logdmn0 25138 . . . . . . . 8 (𝐴𝐷𝐴 ≠ 0)
71, 6syl 17 . . . . . . 7 (𝜑𝐴 ≠ 0)
85, 7logcld 25069 . . . . . 6 (𝜑 → (log‘𝐴) ∈ ℂ)
98imcld 14547 . . . . 5 (𝜑 → (ℑ‘(log‘𝐴)) ∈ ℝ)
109recnd 10661 . . . 4 (𝜑 → (ℑ‘(log‘𝐴)) ∈ ℂ)
11 logcnlem.b . . . . . . . 8 (𝜑𝐵𝐷)
122ellogdm 25137 . . . . . . . . 9 (𝐵𝐷 ↔ (𝐵 ∈ ℂ ∧ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ+)))
1312simplbi 498 . . . . . . . 8 (𝐵𝐷𝐵 ∈ ℂ)
1411, 13syl 17 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
152logdmn0 25138 . . . . . . . 8 (𝐵𝐷𝐵 ≠ 0)
1611, 15syl 17 . . . . . . 7 (𝜑𝐵 ≠ 0)
1714, 16logcld 25069 . . . . . 6 (𝜑 → (log‘𝐵) ∈ ℂ)
1817imcld 14547 . . . . 5 (𝜑 → (ℑ‘(log‘𝐵)) ∈ ℝ)
1918recnd 10661 . . . 4 (𝜑 → (ℑ‘(log‘𝐵)) ∈ ℂ)
2010, 19abssubd 14806 . . 3 (𝜑 → (abs‘((ℑ‘(log‘𝐴)) − (ℑ‘(log‘𝐵)))) = (abs‘((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴)))))
2117, 8imsubd 14569 . . . . 5 (𝜑 → (ℑ‘((log‘𝐵) − (log‘𝐴))) = ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))))
22 efsub 15445 . . . . . . . . . 10 (((log‘𝐵) ∈ ℂ ∧ (log‘𝐴) ∈ ℂ) → (exp‘((log‘𝐵) − (log‘𝐴))) = ((exp‘(log‘𝐵)) / (exp‘(log‘𝐴))))
2317, 8, 22syl2anc 584 . . . . . . . . 9 (𝜑 → (exp‘((log‘𝐵) − (log‘𝐴))) = ((exp‘(log‘𝐵)) / (exp‘(log‘𝐴))))
24 eflog 25075 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (exp‘(log‘𝐵)) = 𝐵)
2514, 16, 24syl2anc 584 . . . . . . . . . 10 (𝜑 → (exp‘(log‘𝐵)) = 𝐵)
26 eflog 25075 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
275, 7, 26syl2anc 584 . . . . . . . . . 10 (𝜑 → (exp‘(log‘𝐴)) = 𝐴)
2825, 27oveq12d 7169 . . . . . . . . 9 (𝜑 → ((exp‘(log‘𝐵)) / (exp‘(log‘𝐴))) = (𝐵 / 𝐴))
2923, 28eqtrd 2860 . . . . . . . 8 (𝜑 → (exp‘((log‘𝐵) − (log‘𝐴))) = (𝐵 / 𝐴))
3014, 5, 7divcld 11408 . . . . . . . . 9 (𝜑 → (𝐵 / 𝐴) ∈ ℂ)
3114, 5, 16, 7divne0d 11424 . . . . . . . . 9 (𝜑 → (𝐵 / 𝐴) ≠ 0)
3217, 8subcld 10989 . . . . . . . . . 10 (𝜑 → ((log‘𝐵) − (log‘𝐴)) ∈ ℂ)
33 logcnlem.s . . . . . . . . . . . . 13 𝑆 = if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴)))
34 logcnlem.t . . . . . . . . . . . . 13 𝑇 = ((abs‘𝐴) · (𝑅 / (1 + 𝑅)))
35 logcnlem.r . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℝ+)
36 logcnlem.l . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝐴𝐵)) < if(𝑆𝑇, 𝑆, 𝑇))
372, 33, 34, 1, 35, 11, 36logcnlem3 25142 . . . . . . . . . . . 12 (𝜑 → (-π < ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ∧ ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ≤ π))
3837simpld 495 . . . . . . . . . . 11 (𝜑 → -π < ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))))
3938, 21breqtrrd 5090 . . . . . . . . . 10 (𝜑 → -π < (ℑ‘((log‘𝐵) − (log‘𝐴))))
4037simprd 496 . . . . . . . . . . 11 (𝜑 → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ≤ π)
4121, 40eqbrtrd 5084 . . . . . . . . . 10 (𝜑 → (ℑ‘((log‘𝐵) − (log‘𝐴))) ≤ π)
42 ellogrn 25058 . . . . . . . . . 10 (((log‘𝐵) − (log‘𝐴)) ∈ ran log ↔ (((log‘𝐵) − (log‘𝐴)) ∈ ℂ ∧ -π < (ℑ‘((log‘𝐵) − (log‘𝐴))) ∧ (ℑ‘((log‘𝐵) − (log‘𝐴))) ≤ π))
4332, 39, 41, 42syl3anbrc 1337 . . . . . . . . 9 (𝜑 → ((log‘𝐵) − (log‘𝐴)) ∈ ran log)
44 logeftb 25082 . . . . . . . . 9 (((𝐵 / 𝐴) ∈ ℂ ∧ (𝐵 / 𝐴) ≠ 0 ∧ ((log‘𝐵) − (log‘𝐴)) ∈ ran log) → ((log‘(𝐵 / 𝐴)) = ((log‘𝐵) − (log‘𝐴)) ↔ (exp‘((log‘𝐵) − (log‘𝐴))) = (𝐵 / 𝐴)))
4530, 31, 43, 44syl3anc 1365 . . . . . . . 8 (𝜑 → ((log‘(𝐵 / 𝐴)) = ((log‘𝐵) − (log‘𝐴)) ↔ (exp‘((log‘𝐵) − (log‘𝐴))) = (𝐵 / 𝐴)))
4629, 45mpbird 258 . . . . . . 7 (𝜑 → (log‘(𝐵 / 𝐴)) = ((log‘𝐵) − (log‘𝐴)))
4746eqcomd 2831 . . . . . 6 (𝜑 → ((log‘𝐵) − (log‘𝐴)) = (log‘(𝐵 / 𝐴)))
4847fveq2d 6670 . . . . 5 (𝜑 → (ℑ‘((log‘𝐵) − (log‘𝐴))) = (ℑ‘(log‘(𝐵 / 𝐴))))
4921, 48eqtr3d 2862 . . . 4 (𝜑 → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) = (ℑ‘(log‘(𝐵 / 𝐴))))
5049fveq2d 6670 . . 3 (𝜑 → (abs‘((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴)))) = (abs‘(ℑ‘(log‘(𝐵 / 𝐴)))))
5120, 50eqtrd 2860 . 2 (𝜑 → (abs‘((ℑ‘(log‘𝐴)) − (ℑ‘(log‘𝐵)))) = (abs‘(ℑ‘(log‘(𝐵 / 𝐴)))))
5230, 31logcld 25069 . . . . . 6 (𝜑 → (log‘(𝐵 / 𝐴)) ∈ ℂ)
5352imcld 14547 . . . . 5 (𝜑 → (ℑ‘(log‘(𝐵 / 𝐴))) ∈ ℝ)
5453recnd 10661 . . . 4 (𝜑 → (ℑ‘(log‘(𝐵 / 𝐴))) ∈ ℂ)
5554abscld 14789 . . 3 (𝜑 → (abs‘(ℑ‘(log‘(𝐵 / 𝐴)))) ∈ ℝ)
56 0red 10636 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
57 1re 10633 . . . . . . . . . . 11 1 ∈ ℝ
585, 14subcld 10989 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐵) ∈ ℂ)
5958abscld 14789 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴𝐵)) ∈ ℝ)
605, 7absrpcld 14801 . . . . . . . . . . . 12 (𝜑 → (abs‘𝐴) ∈ ℝ+)
6159, 60rerpdivcld 12455 . . . . . . . . . . 11 (𝜑 → ((abs‘(𝐴𝐵)) / (abs‘𝐴)) ∈ ℝ)
62 resubcl 10942 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ ((abs‘(𝐴𝐵)) / (abs‘𝐴)) ∈ ℝ) → (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴))) ∈ ℝ)
6357, 61, 62sylancr 587 . . . . . . . . . 10 (𝜑 → (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴))) ∈ ℝ)
6430recld 14546 . . . . . . . . . 10 (𝜑 → (ℜ‘(𝐵 / 𝐴)) ∈ ℝ)
655abscld 14789 . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘𝐴) ∈ ℝ)
6635rpred 12424 . . . . . . . . . . . . . . . . 17 (𝜑𝑅 ∈ ℝ)
67 1rp 12386 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ+
68 rpaddcl 12404 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ+𝑅 ∈ ℝ+) → (1 + 𝑅) ∈ ℝ+)
6967, 35, 68sylancr 587 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 + 𝑅) ∈ ℝ+)
7066, 69rerpdivcld 12455 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑅 / (1 + 𝑅)) ∈ ℝ)
7165, 70remulcld 10663 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) ∈ ℝ)
7234, 71eqeltrid 2921 . . . . . . . . . . . . . 14 (𝜑𝑇 ∈ ℝ)
73 rpre 12390 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
7473adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐴 ∈ ℝ+) → 𝐴 ∈ ℝ)
755imcld 14547 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (ℑ‘𝐴) ∈ ℝ)
7675recnd 10661 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (ℑ‘𝐴) ∈ ℂ)
7776abscld 14789 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (abs‘(ℑ‘𝐴)) ∈ ℝ)
7877adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ+) → (abs‘(ℑ‘𝐴)) ∈ ℝ)
7974, 78ifclda 4503 . . . . . . . . . . . . . . . . . 18 (𝜑 → if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴))) ∈ ℝ)
8033, 79eqeltrid 2921 . . . . . . . . . . . . . . . . 17 (𝜑𝑆 ∈ ℝ)
81 ltmin 12580 . . . . . . . . . . . . . . . . 17 (((abs‘(𝐴𝐵)) ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑇 ∈ ℝ) → ((abs‘(𝐴𝐵)) < if(𝑆𝑇, 𝑆, 𝑇) ↔ ((abs‘(𝐴𝐵)) < 𝑆 ∧ (abs‘(𝐴𝐵)) < 𝑇)))
8259, 80, 72, 81syl3anc 1365 . . . . . . . . . . . . . . . 16 (𝜑 → ((abs‘(𝐴𝐵)) < if(𝑆𝑇, 𝑆, 𝑇) ↔ ((abs‘(𝐴𝐵)) < 𝑆 ∧ (abs‘(𝐴𝐵)) < 𝑇)))
8336, 82mpbid 233 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘(𝐴𝐵)) < 𝑆 ∧ (abs‘(𝐴𝐵)) < 𝑇))
8483simprd 496 . . . . . . . . . . . . . 14 (𝜑 → (abs‘(𝐴𝐵)) < 𝑇)
8569rpred 12424 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 + 𝑅) ∈ ℝ)
8666ltp1d 11562 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑅 < (𝑅 + 1))
8766recnd 10661 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑅 ∈ ℂ)
88 ax-1cn 10587 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℂ
89 addcom 10818 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑅 + 1) = (1 + 𝑅))
9087, 88, 89sylancl 586 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑅 + 1) = (1 + 𝑅))
9186, 90breqtrd 5088 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑅 < (1 + 𝑅))
9266, 85, 91ltled 10780 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑅 ≤ (1 + 𝑅))
9385recnd 10661 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 + 𝑅) ∈ ℂ)
9493mulid1d 10650 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1 + 𝑅) · 1) = (1 + 𝑅))
9592, 94breqtrrd 5090 . . . . . . . . . . . . . . . . . 18 (𝜑𝑅 ≤ ((1 + 𝑅) · 1))
9657a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 1 ∈ ℝ)
9766, 96, 69ledivmuld 12477 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑅 / (1 + 𝑅)) ≤ 1 ↔ 𝑅 ≤ ((1 + 𝑅) · 1)))
9895, 97mpbird 258 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑅 / (1 + 𝑅)) ≤ 1)
9970, 96, 60lemul2d 12468 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑅 / (1 + 𝑅)) ≤ 1 ↔ ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) ≤ ((abs‘𝐴) · 1)))
10098, 99mpbid 233 . . . . . . . . . . . . . . . 16 (𝜑 → ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) ≤ ((abs‘𝐴) · 1))
10165recnd 10661 . . . . . . . . . . . . . . . . 17 (𝜑 → (abs‘𝐴) ∈ ℂ)
102101mulid1d 10650 . . . . . . . . . . . . . . . 16 (𝜑 → ((abs‘𝐴) · 1) = (abs‘𝐴))
103100, 102breqtrd 5088 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) ≤ (abs‘𝐴))
10434, 103eqbrtrid 5097 . . . . . . . . . . . . . 14 (𝜑𝑇 ≤ (abs‘𝐴))
10559, 72, 65, 84, 104ltletrd 10792 . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝐴𝐵)) < (abs‘𝐴))
106105, 102breqtrrd 5090 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴𝐵)) < ((abs‘𝐴) · 1))
10759, 96, 60ltdivmuld 12475 . . . . . . . . . . . 12 (𝜑 → (((abs‘(𝐴𝐵)) / (abs‘𝐴)) < 1 ↔ (abs‘(𝐴𝐵)) < ((abs‘𝐴) · 1)))
108106, 107mpbird 258 . . . . . . . . . . 11 (𝜑 → ((abs‘(𝐴𝐵)) / (abs‘𝐴)) < 1)
109 posdif 11125 . . . . . . . . . . . 12 ((((abs‘(𝐴𝐵)) / (abs‘𝐴)) ∈ ℝ ∧ 1 ∈ ℝ) → (((abs‘(𝐴𝐵)) / (abs‘𝐴)) < 1 ↔ 0 < (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴)))))
11061, 57, 109sylancl 586 . . . . . . . . . . 11 (𝜑 → (((abs‘(𝐴𝐵)) / (abs‘𝐴)) < 1 ↔ 0 < (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴)))))
111108, 110mpbid 233 . . . . . . . . . 10 (𝜑 → 0 < (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴))))
11258, 5, 7divcld 11408 . . . . . . . . . . . . 13 (𝜑 → ((𝐴𝐵) / 𝐴) ∈ ℂ)
113112releabsd 14804 . . . . . . . . . . . 12 (𝜑 → (ℜ‘((𝐴𝐵) / 𝐴)) ≤ (abs‘((𝐴𝐵) / 𝐴)))
1145, 14, 5, 7divsubdird 11447 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴𝐵) / 𝐴) = ((𝐴 / 𝐴) − (𝐵 / 𝐴)))
1155, 7dividd 11406 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 / 𝐴) = 1)
116115oveq1d 7166 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴 / 𝐴) − (𝐵 / 𝐴)) = (1 − (𝐵 / 𝐴)))
117114, 116eqtrd 2860 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴𝐵) / 𝐴) = (1 − (𝐵 / 𝐴)))
118117fveq2d 6670 . . . . . . . . . . . . . 14 (𝜑 → (ℜ‘((𝐴𝐵) / 𝐴)) = (ℜ‘(1 − (𝐵 / 𝐴))))
119 resub 14479 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ (𝐵 / 𝐴) ∈ ℂ) → (ℜ‘(1 − (𝐵 / 𝐴))) = ((ℜ‘1) − (ℜ‘(𝐵 / 𝐴))))
12088, 30, 119sylancr 587 . . . . . . . . . . . . . 14 (𝜑 → (ℜ‘(1 − (𝐵 / 𝐴))) = ((ℜ‘1) − (ℜ‘(𝐵 / 𝐴))))
121118, 120eqtrd 2860 . . . . . . . . . . . . 13 (𝜑 → (ℜ‘((𝐴𝐵) / 𝐴)) = ((ℜ‘1) − (ℜ‘(𝐵 / 𝐴))))
122 re1 14506 . . . . . . . . . . . . . 14 (ℜ‘1) = 1
123122oveq1i 7161 . . . . . . . . . . . . 13 ((ℜ‘1) − (ℜ‘(𝐵 / 𝐴))) = (1 − (ℜ‘(𝐵 / 𝐴)))
124121, 123syl6eq 2876 . . . . . . . . . . . 12 (𝜑 → (ℜ‘((𝐴𝐵) / 𝐴)) = (1 − (ℜ‘(𝐵 / 𝐴))))
12558, 5, 7absdivd 14808 . . . . . . . . . . . 12 (𝜑 → (abs‘((𝐴𝐵) / 𝐴)) = ((abs‘(𝐴𝐵)) / (abs‘𝐴)))
126113, 124, 1253brtr3d 5093 . . . . . . . . . . 11 (𝜑 → (1 − (ℜ‘(𝐵 / 𝐴))) ≤ ((abs‘(𝐴𝐵)) / (abs‘𝐴)))
12796, 64, 61, 126subled 11235 . . . . . . . . . 10 (𝜑 → (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴))) ≤ (ℜ‘(𝐵 / 𝐴)))
12856, 63, 64, 111, 127ltletrd 10792 . . . . . . . . 9 (𝜑 → 0 < (ℜ‘(𝐵 / 𝐴)))
129 argregt0 25108 . . . . . . . . 9 (((𝐵 / 𝐴) ∈ ℂ ∧ 0 < (ℜ‘(𝐵 / 𝐴))) → (ℑ‘(log‘(𝐵 / 𝐴))) ∈ (-(π / 2)(,)(π / 2)))
13030, 128, 129syl2anc 584 . . . . . . . 8 (𝜑 → (ℑ‘(log‘(𝐵 / 𝐴))) ∈ (-(π / 2)(,)(π / 2)))
131 cosq14gt0 25013 . . . . . . . 8 ((ℑ‘(log‘(𝐵 / 𝐴))) ∈ (-(π / 2)(,)(π / 2)) → 0 < (cos‘(ℑ‘(log‘(𝐵 / 𝐴)))))
132130, 131syl 17 . . . . . . 7 (𝜑 → 0 < (cos‘(ℑ‘(log‘(𝐵 / 𝐴)))))
133132gt0ne0d 11196 . . . . . 6 (𝜑 → (cos‘(ℑ‘(log‘(𝐵 / 𝐴)))) ≠ 0)
13453, 133retancld 15490 . . . . 5 (𝜑 → (tan‘(ℑ‘(log‘(𝐵 / 𝐴)))) ∈ ℝ)
135134recnd 10661 . . . 4 (𝜑 → (tan‘(ℑ‘(log‘(𝐵 / 𝐴)))) ∈ ℂ)
136135abscld 14789 . . 3 (𝜑 → (abs‘(tan‘(ℑ‘(log‘(𝐵 / 𝐴))))) ∈ ℝ)
137 tanabsge 25009 . . . 4 ((ℑ‘(log‘(𝐵 / 𝐴))) ∈ (-(π / 2)(,)(π / 2)) → (abs‘(ℑ‘(log‘(𝐵 / 𝐴)))) ≤ (abs‘(tan‘(ℑ‘(log‘(𝐵 / 𝐴))))))
138130, 137syl 17 . . 3 (𝜑 → (abs‘(ℑ‘(log‘(𝐵 / 𝐴)))) ≤ (abs‘(tan‘(ℑ‘(log‘(𝐵 / 𝐴))))))
139128gt0ne0d 11196 . . . . . . 7 (𝜑 → (ℜ‘(𝐵 / 𝐴)) ≠ 0)
140 tanarg 25117 . . . . . . 7 (((𝐵 / 𝐴) ∈ ℂ ∧ (ℜ‘(𝐵 / 𝐴)) ≠ 0) → (tan‘(ℑ‘(log‘(𝐵 / 𝐴)))) = ((ℑ‘(𝐵 / 𝐴)) / (ℜ‘(𝐵 / 𝐴))))
14130, 139, 140syl2anc 584 . . . . . 6 (𝜑 → (tan‘(ℑ‘(log‘(𝐵 / 𝐴)))) = ((ℑ‘(𝐵 / 𝐴)) / (ℜ‘(𝐵 / 𝐴))))
142141fveq2d 6670 . . . . 5 (𝜑 → (abs‘(tan‘(ℑ‘(log‘(𝐵 / 𝐴))))) = (abs‘((ℑ‘(𝐵 / 𝐴)) / (ℜ‘(𝐵 / 𝐴)))))
14330imcld 14547 . . . . . . 7 (𝜑 → (ℑ‘(𝐵 / 𝐴)) ∈ ℝ)
144143recnd 10661 . . . . . 6 (𝜑 → (ℑ‘(𝐵 / 𝐴)) ∈ ℂ)
14564recnd 10661 . . . . . 6 (𝜑 → (ℜ‘(𝐵 / 𝐴)) ∈ ℂ)
146144, 145, 139absdivd 14808 . . . . 5 (𝜑 → (abs‘((ℑ‘(𝐵 / 𝐴)) / (ℜ‘(𝐵 / 𝐴)))) = ((abs‘(ℑ‘(𝐵 / 𝐴))) / (abs‘(ℜ‘(𝐵 / 𝐴)))))
14756, 64, 128ltled 10780 . . . . . . 7 (𝜑 → 0 ≤ (ℜ‘(𝐵 / 𝐴)))
14864, 147absidd 14775 . . . . . 6 (𝜑 → (abs‘(ℜ‘(𝐵 / 𝐴))) = (ℜ‘(𝐵 / 𝐴)))
149148oveq2d 7167 . . . . 5 (𝜑 → ((abs‘(ℑ‘(𝐵 / 𝐴))) / (abs‘(ℜ‘(𝐵 / 𝐴)))) = ((abs‘(ℑ‘(𝐵 / 𝐴))) / (ℜ‘(𝐵 / 𝐴))))
150142, 146, 1493eqtrd 2864 . . . 4 (𝜑 → (abs‘(tan‘(ℑ‘(log‘(𝐵 / 𝐴))))) = ((abs‘(ℑ‘(𝐵 / 𝐴))) / (ℜ‘(𝐵 / 𝐴))))
151144abscld 14789 . . . . . 6 (𝜑 → (abs‘(ℑ‘(𝐵 / 𝐴))) ∈ ℝ)
15264, 66remulcld 10663 . . . . . 6 (𝜑 → ((ℜ‘(𝐵 / 𝐴)) · 𝑅) ∈ ℝ)
15314, 5subcld 10989 . . . . . . . . 9 (𝜑 → (𝐵𝐴) ∈ ℂ)
154153, 5, 7divcld 11408 . . . . . . . 8 (𝜑 → ((𝐵𝐴) / 𝐴) ∈ ℂ)
155 absimle 14662 . . . . . . . 8 (((𝐵𝐴) / 𝐴) ∈ ℂ → (abs‘(ℑ‘((𝐵𝐴) / 𝐴))) ≤ (abs‘((𝐵𝐴) / 𝐴)))
156154, 155syl 17 . . . . . . 7 (𝜑 → (abs‘(ℑ‘((𝐵𝐴) / 𝐴))) ≤ (abs‘((𝐵𝐴) / 𝐴)))
15714, 5, 5, 7divsubdird 11447 . . . . . . . . . . 11 (𝜑 → ((𝐵𝐴) / 𝐴) = ((𝐵 / 𝐴) − (𝐴 / 𝐴)))
158115oveq2d 7167 . . . . . . . . . . 11 (𝜑 → ((𝐵 / 𝐴) − (𝐴 / 𝐴)) = ((𝐵 / 𝐴) − 1))
159157, 158eqtrd 2860 . . . . . . . . . 10 (𝜑 → ((𝐵𝐴) / 𝐴) = ((𝐵 / 𝐴) − 1))
160159fveq2d 6670 . . . . . . . . 9 (𝜑 → (ℑ‘((𝐵𝐴) / 𝐴)) = (ℑ‘((𝐵 / 𝐴) − 1)))
161 imsub 14487 . . . . . . . . . . 11 (((𝐵 / 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (ℑ‘((𝐵 / 𝐴) − 1)) = ((ℑ‘(𝐵 / 𝐴)) − (ℑ‘1)))
16230, 88, 161sylancl 586 . . . . . . . . . 10 (𝜑 → (ℑ‘((𝐵 / 𝐴) − 1)) = ((ℑ‘(𝐵 / 𝐴)) − (ℑ‘1)))
163 im1 14507 . . . . . . . . . . 11 (ℑ‘1) = 0
164163oveq2i 7162 . . . . . . . . . 10 ((ℑ‘(𝐵 / 𝐴)) − (ℑ‘1)) = ((ℑ‘(𝐵 / 𝐴)) − 0)
165162, 164syl6eq 2876 . . . . . . . . 9 (𝜑 → (ℑ‘((𝐵 / 𝐴) − 1)) = ((ℑ‘(𝐵 / 𝐴)) − 0))
166144subid1d 10978 . . . . . . . . 9 (𝜑 → ((ℑ‘(𝐵 / 𝐴)) − 0) = (ℑ‘(𝐵 / 𝐴)))
167160, 165, 1663eqtrrd 2865 . . . . . . . 8 (𝜑 → (ℑ‘(𝐵 / 𝐴)) = (ℑ‘((𝐵𝐴) / 𝐴)))
168167fveq2d 6670 . . . . . . 7 (𝜑 → (abs‘(ℑ‘(𝐵 / 𝐴))) = (abs‘(ℑ‘((𝐵𝐴) / 𝐴))))
1695, 14abssubd 14806 . . . . . . . . 9 (𝜑 → (abs‘(𝐴𝐵)) = (abs‘(𝐵𝐴)))
170169oveq1d 7166 . . . . . . . 8 (𝜑 → ((abs‘(𝐴𝐵)) / (abs‘𝐴)) = ((abs‘(𝐵𝐴)) / (abs‘𝐴)))
171153, 5, 7absdivd 14808 . . . . . . . 8 (𝜑 → (abs‘((𝐵𝐴) / 𝐴)) = ((abs‘(𝐵𝐴)) / (abs‘𝐴)))
172170, 171eqtr4d 2863 . . . . . . 7 (𝜑 → ((abs‘(𝐴𝐵)) / (abs‘𝐴)) = (abs‘((𝐵𝐴) / 𝐴)))
173156, 168, 1723brtr4d 5094 . . . . . 6 (𝜑 → (abs‘(ℑ‘(𝐵 / 𝐴))) ≤ ((abs‘(𝐴𝐵)) / (abs‘𝐴)))
17465, 59resubcld 11060 . . . . . . . . 9 (𝜑 → ((abs‘𝐴) − (abs‘(𝐴𝐵))) ∈ ℝ)
175174, 66remulcld 10663 . . . . . . . 8 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) · 𝑅) ∈ ℝ)
17665, 152remulcld 10663 . . . . . . . 8 (𝜑 → ((abs‘𝐴) · ((ℜ‘(𝐵 / 𝐴)) · 𝑅)) ∈ ℝ)
17759recnd 10661 . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝐴𝐵)) ∈ ℂ)
17888a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℂ)
179177, 178, 87adddid 10657 . . . . . . . . . . . 12 (𝜑 → ((abs‘(𝐴𝐵)) · (1 + 𝑅)) = (((abs‘(𝐴𝐵)) · 1) + ((abs‘(𝐴𝐵)) · 𝑅)))
180177mulid1d 10650 . . . . . . . . . . . . 13 (𝜑 → ((abs‘(𝐴𝐵)) · 1) = (abs‘(𝐴𝐵)))
181180oveq1d 7166 . . . . . . . . . . . 12 (𝜑 → (((abs‘(𝐴𝐵)) · 1) + ((abs‘(𝐴𝐵)) · 𝑅)) = ((abs‘(𝐴𝐵)) + ((abs‘(𝐴𝐵)) · 𝑅)))
182179, 181eqtrd 2860 . . . . . . . . . . 11 (𝜑 → ((abs‘(𝐴𝐵)) · (1 + 𝑅)) = ((abs‘(𝐴𝐵)) + ((abs‘(𝐴𝐵)) · 𝑅)))
18369rpne0d 12429 . . . . . . . . . . . . . . 15 (𝜑 → (1 + 𝑅) ≠ 0)
184101, 87, 93, 183divassd 11443 . . . . . . . . . . . . . 14 (𝜑 → (((abs‘𝐴) · 𝑅) / (1 + 𝑅)) = ((abs‘𝐴) · (𝑅 / (1 + 𝑅))))
185184, 34syl6eqr 2878 . . . . . . . . . . . . 13 (𝜑 → (((abs‘𝐴) · 𝑅) / (1 + 𝑅)) = 𝑇)
18684, 185breqtrrd 5090 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴𝐵)) < (((abs‘𝐴) · 𝑅) / (1 + 𝑅)))
18765, 66remulcld 10663 . . . . . . . . . . . . 13 (𝜑 → ((abs‘𝐴) · 𝑅) ∈ ℝ)
18859, 187, 69ltmuldivd 12471 . . . . . . . . . . . 12 (𝜑 → (((abs‘(𝐴𝐵)) · (1 + 𝑅)) < ((abs‘𝐴) · 𝑅) ↔ (abs‘(𝐴𝐵)) < (((abs‘𝐴) · 𝑅) / (1 + 𝑅))))
189186, 188mpbird 258 . . . . . . . . . . 11 (𝜑 → ((abs‘(𝐴𝐵)) · (1 + 𝑅)) < ((abs‘𝐴) · 𝑅))
190182, 189eqbrtrrd 5086 . . . . . . . . . 10 (𝜑 → ((abs‘(𝐴𝐵)) + ((abs‘(𝐴𝐵)) · 𝑅)) < ((abs‘𝐴) · 𝑅))
19159, 66remulcld 10663 . . . . . . . . . . 11 (𝜑 → ((abs‘(𝐴𝐵)) · 𝑅) ∈ ℝ)
19259, 191, 187ltaddsubd 11232 . . . . . . . . . 10 (𝜑 → (((abs‘(𝐴𝐵)) + ((abs‘(𝐴𝐵)) · 𝑅)) < ((abs‘𝐴) · 𝑅) ↔ (abs‘(𝐴𝐵)) < (((abs‘𝐴) · 𝑅) − ((abs‘(𝐴𝐵)) · 𝑅))))
193190, 192mpbid 233 . . . . . . . . 9 (𝜑 → (abs‘(𝐴𝐵)) < (((abs‘𝐴) · 𝑅) − ((abs‘(𝐴𝐵)) · 𝑅)))
194101, 177, 87subdird 11089 . . . . . . . . 9 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) · 𝑅) = (((abs‘𝐴) · 𝑅) − ((abs‘(𝐴𝐵)) · 𝑅)))
195193, 194breqtrrd 5090 . . . . . . . 8 (𝜑 → (abs‘(𝐴𝐵)) < (((abs‘𝐴) − (abs‘(𝐴𝐵))) · 𝑅))
19660rpne0d 12429 . . . . . . . . . . . . . 14 (𝜑 → (abs‘𝐴) ≠ 0)
197101, 177, 101, 196divsubdird 11447 . . . . . . . . . . . . 13 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) / (abs‘𝐴)) = (((abs‘𝐴) / (abs‘𝐴)) − ((abs‘(𝐴𝐵)) / (abs‘𝐴))))
198101, 196dividd 11406 . . . . . . . . . . . . . 14 (𝜑 → ((abs‘𝐴) / (abs‘𝐴)) = 1)
199198oveq1d 7166 . . . . . . . . . . . . 13 (𝜑 → (((abs‘𝐴) / (abs‘𝐴)) − ((abs‘(𝐴𝐵)) / (abs‘𝐴))) = (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴))))
200197, 199eqtrd 2860 . . . . . . . . . . . 12 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) / (abs‘𝐴)) = (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴))))
201200, 127eqbrtrd 5084 . . . . . . . . . . 11 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) / (abs‘𝐴)) ≤ (ℜ‘(𝐵 / 𝐴)))
202174, 64, 60ledivmuld 12477 . . . . . . . . . . 11 (𝜑 → ((((abs‘𝐴) − (abs‘(𝐴𝐵))) / (abs‘𝐴)) ≤ (ℜ‘(𝐵 / 𝐴)) ↔ ((abs‘𝐴) − (abs‘(𝐴𝐵))) ≤ ((abs‘𝐴) · (ℜ‘(𝐵 / 𝐴)))))
203201, 202mpbid 233 . . . . . . . . . 10 (𝜑 → ((abs‘𝐴) − (abs‘(𝐴𝐵))) ≤ ((abs‘𝐴) · (ℜ‘(𝐵 / 𝐴))))
20465, 64remulcld 10663 . . . . . . . . . . 11 (𝜑 → ((abs‘𝐴) · (ℜ‘(𝐵 / 𝐴))) ∈ ℝ)
205174, 204, 35lemul1d 12467 . . . . . . . . . 10 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) ≤ ((abs‘𝐴) · (ℜ‘(𝐵 / 𝐴))) ↔ (((abs‘𝐴) − (abs‘(𝐴𝐵))) · 𝑅) ≤ (((abs‘𝐴) · (ℜ‘(𝐵 / 𝐴))) · 𝑅)))
206203, 205mpbid 233 . . . . . . . . 9 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) · 𝑅) ≤ (((abs‘𝐴) · (ℜ‘(𝐵 / 𝐴))) · 𝑅))
207101, 145, 87mulassd 10656 . . . . . . . . 9 (𝜑 → (((abs‘𝐴) · (ℜ‘(𝐵 / 𝐴))) · 𝑅) = ((abs‘𝐴) · ((ℜ‘(𝐵 / 𝐴)) · 𝑅)))
208206, 207breqtrd 5088 . . . . . . . 8 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) · 𝑅) ≤ ((abs‘𝐴) · ((ℜ‘(𝐵 / 𝐴)) · 𝑅)))
20959, 175, 176, 195, 208ltletrd 10792 . . . . . . 7 (𝜑 → (abs‘(𝐴𝐵)) < ((abs‘𝐴) · ((ℜ‘(𝐵 / 𝐴)) · 𝑅)))
21059, 152, 60ltdivmuld 12475 . . . . . . 7 (𝜑 → (((abs‘(𝐴𝐵)) / (abs‘𝐴)) < ((ℜ‘(𝐵 / 𝐴)) · 𝑅) ↔ (abs‘(𝐴𝐵)) < ((abs‘𝐴) · ((ℜ‘(𝐵 / 𝐴)) · 𝑅))))
211209, 210mpbird 258 . . . . . 6 (𝜑 → ((abs‘(𝐴𝐵)) / (abs‘𝐴)) < ((ℜ‘(𝐵 / 𝐴)) · 𝑅))
212151, 61, 152, 173, 211lelttrd 10790 . . . . 5 (𝜑 → (abs‘(ℑ‘(𝐵 / 𝐴))) < ((ℜ‘(𝐵 / 𝐴)) · 𝑅))
213 ltdivmul 11507 . . . . . 6 (((abs‘(ℑ‘(𝐵 / 𝐴))) ∈ ℝ ∧ 𝑅 ∈ ℝ ∧ ((ℜ‘(𝐵 / 𝐴)) ∈ ℝ ∧ 0 < (ℜ‘(𝐵 / 𝐴)))) → (((abs‘(ℑ‘(𝐵 / 𝐴))) / (ℜ‘(𝐵 / 𝐴))) < 𝑅 ↔ (abs‘(ℑ‘(𝐵 / 𝐴))) < ((ℜ‘(𝐵 / 𝐴)) · 𝑅)))
214151, 66, 64, 128, 213syl112anc 1368 . . . . 5 (𝜑 → (((abs‘(ℑ‘(𝐵 / 𝐴))) / (ℜ‘(𝐵 / 𝐴))) < 𝑅 ↔ (abs‘(ℑ‘(𝐵 / 𝐴))) < ((ℜ‘(𝐵 / 𝐴)) · 𝑅)))
215212, 214mpbird 258 . . . 4 (𝜑 → ((abs‘(ℑ‘(𝐵 / 𝐴))) / (ℜ‘(𝐵 / 𝐴))) < 𝑅)
216150, 215eqbrtrd 5084 . . 3 (𝜑 → (abs‘(tan‘(ℑ‘(log‘(𝐵 / 𝐴))))) < 𝑅)
21755, 136, 66, 138, 216lelttrd 10790 . 2 (𝜑 → (abs‘(ℑ‘(log‘(𝐵 / 𝐴)))) < 𝑅)
21851, 217eqbrtrd 5084 1 (𝜑 → (abs‘((ℑ‘(log‘𝐴)) − (ℑ‘(log‘𝐵)))) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wne 3020  cdif 3936  ifcif 4469   class class class wbr 5062  ran crn 5554  cfv 6351  (class class class)co 7151  cc 10527  cr 10528  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534  -∞cmnf 10665   < clt 10667  cle 10668  cmin 10862  -cneg 10863   / cdiv 11289  2c2 11684  +crp 12382  (,)cioo 12731  (,]cioc 12732  cre 14449  cim 14450  abscabs 14586  expce 15407  cosccos 15410  tanctan 15411  πcpi 15412  logclog 25053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8282  df-map 8401  df-pm 8402  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12383  df-xneg 12500  df-xadd 12501  df-xmul 12502  df-ioo 12735  df-ioc 12736  df-ico 12737  df-icc 12738  df-fz 12886  df-fzo 13027  df-fl 13155  df-mod 13231  df-seq 13363  df-exp 13423  df-fac 13627  df-bc 13656  df-hash 13684  df-shft 14419  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-limsup 14821  df-clim 14838  df-rlim 14839  df-sum 15036  df-ef 15413  df-sin 15415  df-cos 15416  df-tan 15417  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-submnd 17947  df-mulg 18157  df-cntz 18379  df-cmn 18830  df-psmet 20455  df-xmet 20456  df-met 20457  df-bl 20458  df-mopn 20459  df-fbas 20460  df-fg 20461  df-cnfld 20464  df-top 21420  df-topon 21437  df-topsp 21459  df-bases 21472  df-cld 21545  df-ntr 21546  df-cls 21547  df-nei 21624  df-lp 21662  df-perf 21663  df-cn 21753  df-cnp 21754  df-haus 21841  df-tx 22088  df-hmeo 22281  df-fil 22372  df-fm 22464  df-flim 22465  df-flf 22466  df-xms 22847  df-ms 22848  df-tms 22849  df-cncf 23403  df-limc 24381  df-dv 24382  df-log 25055
This theorem is referenced by:  logcnlem5  25144
  Copyright terms: Public domain W3C validator