MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logcnlem4 Structured version   Visualization version   GIF version

Theorem logcnlem4 26688
Description: Lemma for logcn 26690. (Contributed by Mario Carneiro, 25-Feb-2015.)
Hypotheses
Ref Expression
logcn.d 𝐷 = (ℂ ∖ (-∞(,]0))
logcnlem.s 𝑆 = if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴)))
logcnlem.t 𝑇 = ((abs‘𝐴) · (𝑅 / (1 + 𝑅)))
logcnlem.a (𝜑𝐴𝐷)
logcnlem.r (𝜑𝑅 ∈ ℝ+)
logcnlem.b (𝜑𝐵𝐷)
logcnlem.l (𝜑 → (abs‘(𝐴𝐵)) < if(𝑆𝑇, 𝑆, 𝑇))
Assertion
Ref Expression
logcnlem4 (𝜑 → (abs‘((ℑ‘(log‘𝐴)) − (ℑ‘(log‘𝐵)))) < 𝑅)

Proof of Theorem logcnlem4
StepHypRef Expression
1 logcnlem.a . . . . . . . 8 (𝜑𝐴𝐷)
2 logcn.d . . . . . . . . . 10 𝐷 = (ℂ ∖ (-∞(,]0))
32ellogdm 26682 . . . . . . . . 9 (𝐴𝐷 ↔ (𝐴 ∈ ℂ ∧ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ+)))
43simplbi 497 . . . . . . . 8 (𝐴𝐷𝐴 ∈ ℂ)
51, 4syl 17 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
62logdmn0 26683 . . . . . . . 8 (𝐴𝐷𝐴 ≠ 0)
71, 6syl 17 . . . . . . 7 (𝜑𝐴 ≠ 0)
85, 7logcld 26613 . . . . . 6 (𝜑 → (log‘𝐴) ∈ ℂ)
98imcld 15235 . . . . 5 (𝜑 → (ℑ‘(log‘𝐴)) ∈ ℝ)
109recnd 11290 . . . 4 (𝜑 → (ℑ‘(log‘𝐴)) ∈ ℂ)
11 logcnlem.b . . . . . . . 8 (𝜑𝐵𝐷)
122ellogdm 26682 . . . . . . . . 9 (𝐵𝐷 ↔ (𝐵 ∈ ℂ ∧ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ+)))
1312simplbi 497 . . . . . . . 8 (𝐵𝐷𝐵 ∈ ℂ)
1411, 13syl 17 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
152logdmn0 26683 . . . . . . . 8 (𝐵𝐷𝐵 ≠ 0)
1611, 15syl 17 . . . . . . 7 (𝜑𝐵 ≠ 0)
1714, 16logcld 26613 . . . . . 6 (𝜑 → (log‘𝐵) ∈ ℂ)
1817imcld 15235 . . . . 5 (𝜑 → (ℑ‘(log‘𝐵)) ∈ ℝ)
1918recnd 11290 . . . 4 (𝜑 → (ℑ‘(log‘𝐵)) ∈ ℂ)
2010, 19abssubd 15493 . . 3 (𝜑 → (abs‘((ℑ‘(log‘𝐴)) − (ℑ‘(log‘𝐵)))) = (abs‘((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴)))))
2117, 8imsubd 15257 . . . . 5 (𝜑 → (ℑ‘((log‘𝐵) − (log‘𝐴))) = ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))))
22 efsub 16137 . . . . . . . . . 10 (((log‘𝐵) ∈ ℂ ∧ (log‘𝐴) ∈ ℂ) → (exp‘((log‘𝐵) − (log‘𝐴))) = ((exp‘(log‘𝐵)) / (exp‘(log‘𝐴))))
2317, 8, 22syl2anc 584 . . . . . . . . 9 (𝜑 → (exp‘((log‘𝐵) − (log‘𝐴))) = ((exp‘(log‘𝐵)) / (exp‘(log‘𝐴))))
24 eflog 26619 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (exp‘(log‘𝐵)) = 𝐵)
2514, 16, 24syl2anc 584 . . . . . . . . . 10 (𝜑 → (exp‘(log‘𝐵)) = 𝐵)
26 eflog 26619 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
275, 7, 26syl2anc 584 . . . . . . . . . 10 (𝜑 → (exp‘(log‘𝐴)) = 𝐴)
2825, 27oveq12d 7450 . . . . . . . . 9 (𝜑 → ((exp‘(log‘𝐵)) / (exp‘(log‘𝐴))) = (𝐵 / 𝐴))
2923, 28eqtrd 2776 . . . . . . . 8 (𝜑 → (exp‘((log‘𝐵) − (log‘𝐴))) = (𝐵 / 𝐴))
3014, 5, 7divcld 12044 . . . . . . . . 9 (𝜑 → (𝐵 / 𝐴) ∈ ℂ)
3114, 5, 16, 7divne0d 12060 . . . . . . . . 9 (𝜑 → (𝐵 / 𝐴) ≠ 0)
3217, 8subcld 11621 . . . . . . . . . 10 (𝜑 → ((log‘𝐵) − (log‘𝐴)) ∈ ℂ)
33 logcnlem.s . . . . . . . . . . . . 13 𝑆 = if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴)))
34 logcnlem.t . . . . . . . . . . . . 13 𝑇 = ((abs‘𝐴) · (𝑅 / (1 + 𝑅)))
35 logcnlem.r . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℝ+)
36 logcnlem.l . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝐴𝐵)) < if(𝑆𝑇, 𝑆, 𝑇))
372, 33, 34, 1, 35, 11, 36logcnlem3 26687 . . . . . . . . . . . 12 (𝜑 → (-π < ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ∧ ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ≤ π))
3837simpld 494 . . . . . . . . . . 11 (𝜑 → -π < ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))))
3938, 21breqtrrd 5170 . . . . . . . . . 10 (𝜑 → -π < (ℑ‘((log‘𝐵) − (log‘𝐴))))
4037simprd 495 . . . . . . . . . . 11 (𝜑 → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) ≤ π)
4121, 40eqbrtrd 5164 . . . . . . . . . 10 (𝜑 → (ℑ‘((log‘𝐵) − (log‘𝐴))) ≤ π)
42 ellogrn 26602 . . . . . . . . . 10 (((log‘𝐵) − (log‘𝐴)) ∈ ran log ↔ (((log‘𝐵) − (log‘𝐴)) ∈ ℂ ∧ -π < (ℑ‘((log‘𝐵) − (log‘𝐴))) ∧ (ℑ‘((log‘𝐵) − (log‘𝐴))) ≤ π))
4332, 39, 41, 42syl3anbrc 1343 . . . . . . . . 9 (𝜑 → ((log‘𝐵) − (log‘𝐴)) ∈ ran log)
44 logeftb 26626 . . . . . . . . 9 (((𝐵 / 𝐴) ∈ ℂ ∧ (𝐵 / 𝐴) ≠ 0 ∧ ((log‘𝐵) − (log‘𝐴)) ∈ ran log) → ((log‘(𝐵 / 𝐴)) = ((log‘𝐵) − (log‘𝐴)) ↔ (exp‘((log‘𝐵) − (log‘𝐴))) = (𝐵 / 𝐴)))
4530, 31, 43, 44syl3anc 1372 . . . . . . . 8 (𝜑 → ((log‘(𝐵 / 𝐴)) = ((log‘𝐵) − (log‘𝐴)) ↔ (exp‘((log‘𝐵) − (log‘𝐴))) = (𝐵 / 𝐴)))
4629, 45mpbird 257 . . . . . . 7 (𝜑 → (log‘(𝐵 / 𝐴)) = ((log‘𝐵) − (log‘𝐴)))
4746eqcomd 2742 . . . . . 6 (𝜑 → ((log‘𝐵) − (log‘𝐴)) = (log‘(𝐵 / 𝐴)))
4847fveq2d 6909 . . . . 5 (𝜑 → (ℑ‘((log‘𝐵) − (log‘𝐴))) = (ℑ‘(log‘(𝐵 / 𝐴))))
4921, 48eqtr3d 2778 . . . 4 (𝜑 → ((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴))) = (ℑ‘(log‘(𝐵 / 𝐴))))
5049fveq2d 6909 . . 3 (𝜑 → (abs‘((ℑ‘(log‘𝐵)) − (ℑ‘(log‘𝐴)))) = (abs‘(ℑ‘(log‘(𝐵 / 𝐴)))))
5120, 50eqtrd 2776 . 2 (𝜑 → (abs‘((ℑ‘(log‘𝐴)) − (ℑ‘(log‘𝐵)))) = (abs‘(ℑ‘(log‘(𝐵 / 𝐴)))))
5230, 31logcld 26613 . . . . . 6 (𝜑 → (log‘(𝐵 / 𝐴)) ∈ ℂ)
5352imcld 15235 . . . . 5 (𝜑 → (ℑ‘(log‘(𝐵 / 𝐴))) ∈ ℝ)
5453recnd 11290 . . . 4 (𝜑 → (ℑ‘(log‘(𝐵 / 𝐴))) ∈ ℂ)
5554abscld 15476 . . 3 (𝜑 → (abs‘(ℑ‘(log‘(𝐵 / 𝐴)))) ∈ ℝ)
56 0red 11265 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
57 1re 11262 . . . . . . . . . . 11 1 ∈ ℝ
585, 14subcld 11621 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐵) ∈ ℂ)
5958abscld 15476 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴𝐵)) ∈ ℝ)
605, 7absrpcld 15488 . . . . . . . . . . . 12 (𝜑 → (abs‘𝐴) ∈ ℝ+)
6159, 60rerpdivcld 13109 . . . . . . . . . . 11 (𝜑 → ((abs‘(𝐴𝐵)) / (abs‘𝐴)) ∈ ℝ)
62 resubcl 11574 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ ((abs‘(𝐴𝐵)) / (abs‘𝐴)) ∈ ℝ) → (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴))) ∈ ℝ)
6357, 61, 62sylancr 587 . . . . . . . . . 10 (𝜑 → (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴))) ∈ ℝ)
6430recld 15234 . . . . . . . . . 10 (𝜑 → (ℜ‘(𝐵 / 𝐴)) ∈ ℝ)
655abscld 15476 . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘𝐴) ∈ ℝ)
6635rpred 13078 . . . . . . . . . . . . . . . . 17 (𝜑𝑅 ∈ ℝ)
67 1rp 13039 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ+
68 rpaddcl 13058 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℝ+𝑅 ∈ ℝ+) → (1 + 𝑅) ∈ ℝ+)
6967, 35, 68sylancr 587 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 + 𝑅) ∈ ℝ+)
7066, 69rerpdivcld 13109 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑅 / (1 + 𝑅)) ∈ ℝ)
7165, 70remulcld 11292 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) ∈ ℝ)
7234, 71eqeltrid 2844 . . . . . . . . . . . . . 14 (𝜑𝑇 ∈ ℝ)
73 rpre 13044 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
7473adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝐴 ∈ ℝ+) → 𝐴 ∈ ℝ)
755imcld 15235 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (ℑ‘𝐴) ∈ ℝ)
7675recnd 11290 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (ℑ‘𝐴) ∈ ℂ)
7776abscld 15476 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (abs‘(ℑ‘𝐴)) ∈ ℝ)
7877adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ+) → (abs‘(ℑ‘𝐴)) ∈ ℝ)
7974, 78ifclda 4560 . . . . . . . . . . . . . . . . . 18 (𝜑 → if(𝐴 ∈ ℝ+, 𝐴, (abs‘(ℑ‘𝐴))) ∈ ℝ)
8033, 79eqeltrid 2844 . . . . . . . . . . . . . . . . 17 (𝜑𝑆 ∈ ℝ)
81 ltmin 13237 . . . . . . . . . . . . . . . . 17 (((abs‘(𝐴𝐵)) ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑇 ∈ ℝ) → ((abs‘(𝐴𝐵)) < if(𝑆𝑇, 𝑆, 𝑇) ↔ ((abs‘(𝐴𝐵)) < 𝑆 ∧ (abs‘(𝐴𝐵)) < 𝑇)))
8259, 80, 72, 81syl3anc 1372 . . . . . . . . . . . . . . . 16 (𝜑 → ((abs‘(𝐴𝐵)) < if(𝑆𝑇, 𝑆, 𝑇) ↔ ((abs‘(𝐴𝐵)) < 𝑆 ∧ (abs‘(𝐴𝐵)) < 𝑇)))
8336, 82mpbid 232 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘(𝐴𝐵)) < 𝑆 ∧ (abs‘(𝐴𝐵)) < 𝑇))
8483simprd 495 . . . . . . . . . . . . . 14 (𝜑 → (abs‘(𝐴𝐵)) < 𝑇)
8569rpred 13078 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 + 𝑅) ∈ ℝ)
8666ltp1d 12199 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑅 < (𝑅 + 1))
8766recnd 11290 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑅 ∈ ℂ)
88 ax-1cn 11214 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℂ
89 addcom 11448 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑅 + 1) = (1 + 𝑅))
9087, 88, 89sylancl 586 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑅 + 1) = (1 + 𝑅))
9186, 90breqtrd 5168 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑅 < (1 + 𝑅))
9266, 85, 91ltled 11410 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑅 ≤ (1 + 𝑅))
9385recnd 11290 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 + 𝑅) ∈ ℂ)
9493mulridd 11279 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((1 + 𝑅) · 1) = (1 + 𝑅))
9592, 94breqtrrd 5170 . . . . . . . . . . . . . . . . . 18 (𝜑𝑅 ≤ ((1 + 𝑅) · 1))
9657a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 1 ∈ ℝ)
9766, 96, 69ledivmuld 13131 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑅 / (1 + 𝑅)) ≤ 1 ↔ 𝑅 ≤ ((1 + 𝑅) · 1)))
9895, 97mpbird 257 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑅 / (1 + 𝑅)) ≤ 1)
9970, 96, 60lemul2d 13122 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑅 / (1 + 𝑅)) ≤ 1 ↔ ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) ≤ ((abs‘𝐴) · 1)))
10098, 99mpbid 232 . . . . . . . . . . . . . . . 16 (𝜑 → ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) ≤ ((abs‘𝐴) · 1))
10165recnd 11290 . . . . . . . . . . . . . . . . 17 (𝜑 → (abs‘𝐴) ∈ ℂ)
102101mulridd 11279 . . . . . . . . . . . . . . . 16 (𝜑 → ((abs‘𝐴) · 1) = (abs‘𝐴))
103100, 102breqtrd 5168 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘𝐴) · (𝑅 / (1 + 𝑅))) ≤ (abs‘𝐴))
10434, 103eqbrtrid 5177 . . . . . . . . . . . . . 14 (𝜑𝑇 ≤ (abs‘𝐴))
10559, 72, 65, 84, 104ltletrd 11422 . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝐴𝐵)) < (abs‘𝐴))
106105, 102breqtrrd 5170 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴𝐵)) < ((abs‘𝐴) · 1))
10759, 96, 60ltdivmuld 13129 . . . . . . . . . . . 12 (𝜑 → (((abs‘(𝐴𝐵)) / (abs‘𝐴)) < 1 ↔ (abs‘(𝐴𝐵)) < ((abs‘𝐴) · 1)))
108106, 107mpbird 257 . . . . . . . . . . 11 (𝜑 → ((abs‘(𝐴𝐵)) / (abs‘𝐴)) < 1)
109 posdif 11757 . . . . . . . . . . . 12 ((((abs‘(𝐴𝐵)) / (abs‘𝐴)) ∈ ℝ ∧ 1 ∈ ℝ) → (((abs‘(𝐴𝐵)) / (abs‘𝐴)) < 1 ↔ 0 < (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴)))))
11061, 57, 109sylancl 586 . . . . . . . . . . 11 (𝜑 → (((abs‘(𝐴𝐵)) / (abs‘𝐴)) < 1 ↔ 0 < (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴)))))
111108, 110mpbid 232 . . . . . . . . . 10 (𝜑 → 0 < (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴))))
11258, 5, 7divcld 12044 . . . . . . . . . . . . 13 (𝜑 → ((𝐴𝐵) / 𝐴) ∈ ℂ)
113112releabsd 15491 . . . . . . . . . . . 12 (𝜑 → (ℜ‘((𝐴𝐵) / 𝐴)) ≤ (abs‘((𝐴𝐵) / 𝐴)))
1145, 14, 5, 7divsubdird 12083 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴𝐵) / 𝐴) = ((𝐴 / 𝐴) − (𝐵 / 𝐴)))
1155, 7dividd 12042 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 / 𝐴) = 1)
116115oveq1d 7447 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴 / 𝐴) − (𝐵 / 𝐴)) = (1 − (𝐵 / 𝐴)))
117114, 116eqtrd 2776 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴𝐵) / 𝐴) = (1 − (𝐵 / 𝐴)))
118117fveq2d 6909 . . . . . . . . . . . . . 14 (𝜑 → (ℜ‘((𝐴𝐵) / 𝐴)) = (ℜ‘(1 − (𝐵 / 𝐴))))
119 resub 15167 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ (𝐵 / 𝐴) ∈ ℂ) → (ℜ‘(1 − (𝐵 / 𝐴))) = ((ℜ‘1) − (ℜ‘(𝐵 / 𝐴))))
12088, 30, 119sylancr 587 . . . . . . . . . . . . . 14 (𝜑 → (ℜ‘(1 − (𝐵 / 𝐴))) = ((ℜ‘1) − (ℜ‘(𝐵 / 𝐴))))
121118, 120eqtrd 2776 . . . . . . . . . . . . 13 (𝜑 → (ℜ‘((𝐴𝐵) / 𝐴)) = ((ℜ‘1) − (ℜ‘(𝐵 / 𝐴))))
122 re1 15194 . . . . . . . . . . . . . 14 (ℜ‘1) = 1
123122oveq1i 7442 . . . . . . . . . . . . 13 ((ℜ‘1) − (ℜ‘(𝐵 / 𝐴))) = (1 − (ℜ‘(𝐵 / 𝐴)))
124121, 123eqtrdi 2792 . . . . . . . . . . . 12 (𝜑 → (ℜ‘((𝐴𝐵) / 𝐴)) = (1 − (ℜ‘(𝐵 / 𝐴))))
12558, 5, 7absdivd 15495 . . . . . . . . . . . 12 (𝜑 → (abs‘((𝐴𝐵) / 𝐴)) = ((abs‘(𝐴𝐵)) / (abs‘𝐴)))
126113, 124, 1253brtr3d 5173 . . . . . . . . . . 11 (𝜑 → (1 − (ℜ‘(𝐵 / 𝐴))) ≤ ((abs‘(𝐴𝐵)) / (abs‘𝐴)))
12796, 64, 61, 126subled 11867 . . . . . . . . . 10 (𝜑 → (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴))) ≤ (ℜ‘(𝐵 / 𝐴)))
12856, 63, 64, 111, 127ltletrd 11422 . . . . . . . . 9 (𝜑 → 0 < (ℜ‘(𝐵 / 𝐴)))
129 argregt0 26653 . . . . . . . . 9 (((𝐵 / 𝐴) ∈ ℂ ∧ 0 < (ℜ‘(𝐵 / 𝐴))) → (ℑ‘(log‘(𝐵 / 𝐴))) ∈ (-(π / 2)(,)(π / 2)))
13030, 128, 129syl2anc 584 . . . . . . . 8 (𝜑 → (ℑ‘(log‘(𝐵 / 𝐴))) ∈ (-(π / 2)(,)(π / 2)))
131 cosq14gt0 26553 . . . . . . . 8 ((ℑ‘(log‘(𝐵 / 𝐴))) ∈ (-(π / 2)(,)(π / 2)) → 0 < (cos‘(ℑ‘(log‘(𝐵 / 𝐴)))))
132130, 131syl 17 . . . . . . 7 (𝜑 → 0 < (cos‘(ℑ‘(log‘(𝐵 / 𝐴)))))
133132gt0ne0d 11828 . . . . . 6 (𝜑 → (cos‘(ℑ‘(log‘(𝐵 / 𝐴)))) ≠ 0)
13453, 133retancld 16182 . . . . 5 (𝜑 → (tan‘(ℑ‘(log‘(𝐵 / 𝐴)))) ∈ ℝ)
135134recnd 11290 . . . 4 (𝜑 → (tan‘(ℑ‘(log‘(𝐵 / 𝐴)))) ∈ ℂ)
136135abscld 15476 . . 3 (𝜑 → (abs‘(tan‘(ℑ‘(log‘(𝐵 / 𝐴))))) ∈ ℝ)
137 tanabsge 26549 . . . 4 ((ℑ‘(log‘(𝐵 / 𝐴))) ∈ (-(π / 2)(,)(π / 2)) → (abs‘(ℑ‘(log‘(𝐵 / 𝐴)))) ≤ (abs‘(tan‘(ℑ‘(log‘(𝐵 / 𝐴))))))
138130, 137syl 17 . . 3 (𝜑 → (abs‘(ℑ‘(log‘(𝐵 / 𝐴)))) ≤ (abs‘(tan‘(ℑ‘(log‘(𝐵 / 𝐴))))))
139128gt0ne0d 11828 . . . . . . 7 (𝜑 → (ℜ‘(𝐵 / 𝐴)) ≠ 0)
140 tanarg 26662 . . . . . . 7 (((𝐵 / 𝐴) ∈ ℂ ∧ (ℜ‘(𝐵 / 𝐴)) ≠ 0) → (tan‘(ℑ‘(log‘(𝐵 / 𝐴)))) = ((ℑ‘(𝐵 / 𝐴)) / (ℜ‘(𝐵 / 𝐴))))
14130, 139, 140syl2anc 584 . . . . . 6 (𝜑 → (tan‘(ℑ‘(log‘(𝐵 / 𝐴)))) = ((ℑ‘(𝐵 / 𝐴)) / (ℜ‘(𝐵 / 𝐴))))
142141fveq2d 6909 . . . . 5 (𝜑 → (abs‘(tan‘(ℑ‘(log‘(𝐵 / 𝐴))))) = (abs‘((ℑ‘(𝐵 / 𝐴)) / (ℜ‘(𝐵 / 𝐴)))))
14330imcld 15235 . . . . . . 7 (𝜑 → (ℑ‘(𝐵 / 𝐴)) ∈ ℝ)
144143recnd 11290 . . . . . 6 (𝜑 → (ℑ‘(𝐵 / 𝐴)) ∈ ℂ)
14564recnd 11290 . . . . . 6 (𝜑 → (ℜ‘(𝐵 / 𝐴)) ∈ ℂ)
146144, 145, 139absdivd 15495 . . . . 5 (𝜑 → (abs‘((ℑ‘(𝐵 / 𝐴)) / (ℜ‘(𝐵 / 𝐴)))) = ((abs‘(ℑ‘(𝐵 / 𝐴))) / (abs‘(ℜ‘(𝐵 / 𝐴)))))
14756, 64, 128ltled 11410 . . . . . . 7 (𝜑 → 0 ≤ (ℜ‘(𝐵 / 𝐴)))
14864, 147absidd 15462 . . . . . 6 (𝜑 → (abs‘(ℜ‘(𝐵 / 𝐴))) = (ℜ‘(𝐵 / 𝐴)))
149148oveq2d 7448 . . . . 5 (𝜑 → ((abs‘(ℑ‘(𝐵 / 𝐴))) / (abs‘(ℜ‘(𝐵 / 𝐴)))) = ((abs‘(ℑ‘(𝐵 / 𝐴))) / (ℜ‘(𝐵 / 𝐴))))
150142, 146, 1493eqtrd 2780 . . . 4 (𝜑 → (abs‘(tan‘(ℑ‘(log‘(𝐵 / 𝐴))))) = ((abs‘(ℑ‘(𝐵 / 𝐴))) / (ℜ‘(𝐵 / 𝐴))))
151144abscld 15476 . . . . . 6 (𝜑 → (abs‘(ℑ‘(𝐵 / 𝐴))) ∈ ℝ)
15264, 66remulcld 11292 . . . . . 6 (𝜑 → ((ℜ‘(𝐵 / 𝐴)) · 𝑅) ∈ ℝ)
15314, 5subcld 11621 . . . . . . . . 9 (𝜑 → (𝐵𝐴) ∈ ℂ)
154153, 5, 7divcld 12044 . . . . . . . 8 (𝜑 → ((𝐵𝐴) / 𝐴) ∈ ℂ)
155 absimle 15349 . . . . . . . 8 (((𝐵𝐴) / 𝐴) ∈ ℂ → (abs‘(ℑ‘((𝐵𝐴) / 𝐴))) ≤ (abs‘((𝐵𝐴) / 𝐴)))
156154, 155syl 17 . . . . . . 7 (𝜑 → (abs‘(ℑ‘((𝐵𝐴) / 𝐴))) ≤ (abs‘((𝐵𝐴) / 𝐴)))
15714, 5, 5, 7divsubdird 12083 . . . . . . . . . . 11 (𝜑 → ((𝐵𝐴) / 𝐴) = ((𝐵 / 𝐴) − (𝐴 / 𝐴)))
158115oveq2d 7448 . . . . . . . . . . 11 (𝜑 → ((𝐵 / 𝐴) − (𝐴 / 𝐴)) = ((𝐵 / 𝐴) − 1))
159157, 158eqtrd 2776 . . . . . . . . . 10 (𝜑 → ((𝐵𝐴) / 𝐴) = ((𝐵 / 𝐴) − 1))
160159fveq2d 6909 . . . . . . . . 9 (𝜑 → (ℑ‘((𝐵𝐴) / 𝐴)) = (ℑ‘((𝐵 / 𝐴) − 1)))
161 imsub 15175 . . . . . . . . . . 11 (((𝐵 / 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (ℑ‘((𝐵 / 𝐴) − 1)) = ((ℑ‘(𝐵 / 𝐴)) − (ℑ‘1)))
16230, 88, 161sylancl 586 . . . . . . . . . 10 (𝜑 → (ℑ‘((𝐵 / 𝐴) − 1)) = ((ℑ‘(𝐵 / 𝐴)) − (ℑ‘1)))
163 im1 15195 . . . . . . . . . . 11 (ℑ‘1) = 0
164163oveq2i 7443 . . . . . . . . . 10 ((ℑ‘(𝐵 / 𝐴)) − (ℑ‘1)) = ((ℑ‘(𝐵 / 𝐴)) − 0)
165162, 164eqtrdi 2792 . . . . . . . . 9 (𝜑 → (ℑ‘((𝐵 / 𝐴) − 1)) = ((ℑ‘(𝐵 / 𝐴)) − 0))
166144subid1d 11610 . . . . . . . . 9 (𝜑 → ((ℑ‘(𝐵 / 𝐴)) − 0) = (ℑ‘(𝐵 / 𝐴)))
167160, 165, 1663eqtrrd 2781 . . . . . . . 8 (𝜑 → (ℑ‘(𝐵 / 𝐴)) = (ℑ‘((𝐵𝐴) / 𝐴)))
168167fveq2d 6909 . . . . . . 7 (𝜑 → (abs‘(ℑ‘(𝐵 / 𝐴))) = (abs‘(ℑ‘((𝐵𝐴) / 𝐴))))
1695, 14abssubd 15493 . . . . . . . . 9 (𝜑 → (abs‘(𝐴𝐵)) = (abs‘(𝐵𝐴)))
170169oveq1d 7447 . . . . . . . 8 (𝜑 → ((abs‘(𝐴𝐵)) / (abs‘𝐴)) = ((abs‘(𝐵𝐴)) / (abs‘𝐴)))
171153, 5, 7absdivd 15495 . . . . . . . 8 (𝜑 → (abs‘((𝐵𝐴) / 𝐴)) = ((abs‘(𝐵𝐴)) / (abs‘𝐴)))
172170, 171eqtr4d 2779 . . . . . . 7 (𝜑 → ((abs‘(𝐴𝐵)) / (abs‘𝐴)) = (abs‘((𝐵𝐴) / 𝐴)))
173156, 168, 1723brtr4d 5174 . . . . . 6 (𝜑 → (abs‘(ℑ‘(𝐵 / 𝐴))) ≤ ((abs‘(𝐴𝐵)) / (abs‘𝐴)))
17465, 59resubcld 11692 . . . . . . . . 9 (𝜑 → ((abs‘𝐴) − (abs‘(𝐴𝐵))) ∈ ℝ)
175174, 66remulcld 11292 . . . . . . . 8 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) · 𝑅) ∈ ℝ)
17665, 152remulcld 11292 . . . . . . . 8 (𝜑 → ((abs‘𝐴) · ((ℜ‘(𝐵 / 𝐴)) · 𝑅)) ∈ ℝ)
17759recnd 11290 . . . . . . . . . . . . 13 (𝜑 → (abs‘(𝐴𝐵)) ∈ ℂ)
17888a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℂ)
179177, 178, 87adddid 11286 . . . . . . . . . . . 12 (𝜑 → ((abs‘(𝐴𝐵)) · (1 + 𝑅)) = (((abs‘(𝐴𝐵)) · 1) + ((abs‘(𝐴𝐵)) · 𝑅)))
180177mulridd 11279 . . . . . . . . . . . . 13 (𝜑 → ((abs‘(𝐴𝐵)) · 1) = (abs‘(𝐴𝐵)))
181180oveq1d 7447 . . . . . . . . . . . 12 (𝜑 → (((abs‘(𝐴𝐵)) · 1) + ((abs‘(𝐴𝐵)) · 𝑅)) = ((abs‘(𝐴𝐵)) + ((abs‘(𝐴𝐵)) · 𝑅)))
182179, 181eqtrd 2776 . . . . . . . . . . 11 (𝜑 → ((abs‘(𝐴𝐵)) · (1 + 𝑅)) = ((abs‘(𝐴𝐵)) + ((abs‘(𝐴𝐵)) · 𝑅)))
18369rpne0d 13083 . . . . . . . . . . . . . . 15 (𝜑 → (1 + 𝑅) ≠ 0)
184101, 87, 93, 183divassd 12079 . . . . . . . . . . . . . 14 (𝜑 → (((abs‘𝐴) · 𝑅) / (1 + 𝑅)) = ((abs‘𝐴) · (𝑅 / (1 + 𝑅))))
185184, 34eqtr4di 2794 . . . . . . . . . . . . 13 (𝜑 → (((abs‘𝐴) · 𝑅) / (1 + 𝑅)) = 𝑇)
18684, 185breqtrrd 5170 . . . . . . . . . . . 12 (𝜑 → (abs‘(𝐴𝐵)) < (((abs‘𝐴) · 𝑅) / (1 + 𝑅)))
18765, 66remulcld 11292 . . . . . . . . . . . . 13 (𝜑 → ((abs‘𝐴) · 𝑅) ∈ ℝ)
18859, 187, 69ltmuldivd 13125 . . . . . . . . . . . 12 (𝜑 → (((abs‘(𝐴𝐵)) · (1 + 𝑅)) < ((abs‘𝐴) · 𝑅) ↔ (abs‘(𝐴𝐵)) < (((abs‘𝐴) · 𝑅) / (1 + 𝑅))))
189186, 188mpbird 257 . . . . . . . . . . 11 (𝜑 → ((abs‘(𝐴𝐵)) · (1 + 𝑅)) < ((abs‘𝐴) · 𝑅))
190182, 189eqbrtrrd 5166 . . . . . . . . . 10 (𝜑 → ((abs‘(𝐴𝐵)) + ((abs‘(𝐴𝐵)) · 𝑅)) < ((abs‘𝐴) · 𝑅))
19159, 66remulcld 11292 . . . . . . . . . . 11 (𝜑 → ((abs‘(𝐴𝐵)) · 𝑅) ∈ ℝ)
19259, 191, 187ltaddsubd 11864 . . . . . . . . . 10 (𝜑 → (((abs‘(𝐴𝐵)) + ((abs‘(𝐴𝐵)) · 𝑅)) < ((abs‘𝐴) · 𝑅) ↔ (abs‘(𝐴𝐵)) < (((abs‘𝐴) · 𝑅) − ((abs‘(𝐴𝐵)) · 𝑅))))
193190, 192mpbid 232 . . . . . . . . 9 (𝜑 → (abs‘(𝐴𝐵)) < (((abs‘𝐴) · 𝑅) − ((abs‘(𝐴𝐵)) · 𝑅)))
194101, 177, 87subdird 11721 . . . . . . . . 9 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) · 𝑅) = (((abs‘𝐴) · 𝑅) − ((abs‘(𝐴𝐵)) · 𝑅)))
195193, 194breqtrrd 5170 . . . . . . . 8 (𝜑 → (abs‘(𝐴𝐵)) < (((abs‘𝐴) − (abs‘(𝐴𝐵))) · 𝑅))
19660rpne0d 13083 . . . . . . . . . . . . . 14 (𝜑 → (abs‘𝐴) ≠ 0)
197101, 177, 101, 196divsubdird 12083 . . . . . . . . . . . . 13 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) / (abs‘𝐴)) = (((abs‘𝐴) / (abs‘𝐴)) − ((abs‘(𝐴𝐵)) / (abs‘𝐴))))
198101, 196dividd 12042 . . . . . . . . . . . . . 14 (𝜑 → ((abs‘𝐴) / (abs‘𝐴)) = 1)
199198oveq1d 7447 . . . . . . . . . . . . 13 (𝜑 → (((abs‘𝐴) / (abs‘𝐴)) − ((abs‘(𝐴𝐵)) / (abs‘𝐴))) = (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴))))
200197, 199eqtrd 2776 . . . . . . . . . . . 12 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) / (abs‘𝐴)) = (1 − ((abs‘(𝐴𝐵)) / (abs‘𝐴))))
201200, 127eqbrtrd 5164 . . . . . . . . . . 11 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) / (abs‘𝐴)) ≤ (ℜ‘(𝐵 / 𝐴)))
202174, 64, 60ledivmuld 13131 . . . . . . . . . . 11 (𝜑 → ((((abs‘𝐴) − (abs‘(𝐴𝐵))) / (abs‘𝐴)) ≤ (ℜ‘(𝐵 / 𝐴)) ↔ ((abs‘𝐴) − (abs‘(𝐴𝐵))) ≤ ((abs‘𝐴) · (ℜ‘(𝐵 / 𝐴)))))
203201, 202mpbid 232 . . . . . . . . . 10 (𝜑 → ((abs‘𝐴) − (abs‘(𝐴𝐵))) ≤ ((abs‘𝐴) · (ℜ‘(𝐵 / 𝐴))))
20465, 64remulcld 11292 . . . . . . . . . . 11 (𝜑 → ((abs‘𝐴) · (ℜ‘(𝐵 / 𝐴))) ∈ ℝ)
205174, 204, 35lemul1d 13121 . . . . . . . . . 10 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) ≤ ((abs‘𝐴) · (ℜ‘(𝐵 / 𝐴))) ↔ (((abs‘𝐴) − (abs‘(𝐴𝐵))) · 𝑅) ≤ (((abs‘𝐴) · (ℜ‘(𝐵 / 𝐴))) · 𝑅)))
206203, 205mpbid 232 . . . . . . . . 9 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) · 𝑅) ≤ (((abs‘𝐴) · (ℜ‘(𝐵 / 𝐴))) · 𝑅))
207101, 145, 87mulassd 11285 . . . . . . . . 9 (𝜑 → (((abs‘𝐴) · (ℜ‘(𝐵 / 𝐴))) · 𝑅) = ((abs‘𝐴) · ((ℜ‘(𝐵 / 𝐴)) · 𝑅)))
208206, 207breqtrd 5168 . . . . . . . 8 (𝜑 → (((abs‘𝐴) − (abs‘(𝐴𝐵))) · 𝑅) ≤ ((abs‘𝐴) · ((ℜ‘(𝐵 / 𝐴)) · 𝑅)))
20959, 175, 176, 195, 208ltletrd 11422 . . . . . . 7 (𝜑 → (abs‘(𝐴𝐵)) < ((abs‘𝐴) · ((ℜ‘(𝐵 / 𝐴)) · 𝑅)))
21059, 152, 60ltdivmuld 13129 . . . . . . 7 (𝜑 → (((abs‘(𝐴𝐵)) / (abs‘𝐴)) < ((ℜ‘(𝐵 / 𝐴)) · 𝑅) ↔ (abs‘(𝐴𝐵)) < ((abs‘𝐴) · ((ℜ‘(𝐵 / 𝐴)) · 𝑅))))
211209, 210mpbird 257 . . . . . 6 (𝜑 → ((abs‘(𝐴𝐵)) / (abs‘𝐴)) < ((ℜ‘(𝐵 / 𝐴)) · 𝑅))
212151, 61, 152, 173, 211lelttrd 11420 . . . . 5 (𝜑 → (abs‘(ℑ‘(𝐵 / 𝐴))) < ((ℜ‘(𝐵 / 𝐴)) · 𝑅))
213 ltdivmul 12144 . . . . . 6 (((abs‘(ℑ‘(𝐵 / 𝐴))) ∈ ℝ ∧ 𝑅 ∈ ℝ ∧ ((ℜ‘(𝐵 / 𝐴)) ∈ ℝ ∧ 0 < (ℜ‘(𝐵 / 𝐴)))) → (((abs‘(ℑ‘(𝐵 / 𝐴))) / (ℜ‘(𝐵 / 𝐴))) < 𝑅 ↔ (abs‘(ℑ‘(𝐵 / 𝐴))) < ((ℜ‘(𝐵 / 𝐴)) · 𝑅)))
214151, 66, 64, 128, 213syl112anc 1375 . . . . 5 (𝜑 → (((abs‘(ℑ‘(𝐵 / 𝐴))) / (ℜ‘(𝐵 / 𝐴))) < 𝑅 ↔ (abs‘(ℑ‘(𝐵 / 𝐴))) < ((ℜ‘(𝐵 / 𝐴)) · 𝑅)))
215212, 214mpbird 257 . . . 4 (𝜑 → ((abs‘(ℑ‘(𝐵 / 𝐴))) / (ℜ‘(𝐵 / 𝐴))) < 𝑅)
216150, 215eqbrtrd 5164 . . 3 (𝜑 → (abs‘(tan‘(ℑ‘(log‘(𝐵 / 𝐴))))) < 𝑅)
21755, 136, 66, 138, 216lelttrd 11420 . 2 (𝜑 → (abs‘(ℑ‘(log‘(𝐵 / 𝐴)))) < 𝑅)
21851, 217eqbrtrd 5164 1 (𝜑 → (abs‘((ℑ‘(log‘𝐴)) − (ℑ‘(log‘𝐵)))) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2939  cdif 3947  ifcif 4524   class class class wbr 5142  ran crn 5685  cfv 6560  (class class class)co 7432  cc 11154  cr 11155  0cc0 11156  1c1 11157   + caddc 11159   · cmul 11161  -∞cmnf 11294   < clt 11296  cle 11297  cmin 11493  -cneg 11494   / cdiv 11921  2c2 12322  +crp 13035  (,)cioo 13388  (,]cioc 13389  cre 15137  cim 15138  abscabs 15274  expce 16098  cosccos 16101  tanctan 16102  πcpi 16103  logclog 26597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-ioc 13393  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-seq 14044  df-exp 14104  df-fac 14314  df-bc 14343  df-hash 14371  df-shft 15107  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-limsup 15508  df-clim 15525  df-rlim 15526  df-sum 15724  df-ef 16104  df-sin 16106  df-cos 16107  df-tan 16108  df-pi 16109  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-mulg 19087  df-cntz 19336  df-cmn 19801  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-fbas 21362  df-fg 21363  df-cnfld 21366  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cld 23028  df-ntr 23029  df-cls 23030  df-nei 23107  df-lp 23145  df-perf 23146  df-cn 23236  df-cnp 23237  df-haus 23324  df-tx 23571  df-hmeo 23764  df-fil 23855  df-fm 23947  df-flim 23948  df-flf 23949  df-xms 24331  df-ms 24332  df-tms 24333  df-cncf 24905  df-limc 25902  df-dv 25903  df-log 26599
This theorem is referenced by:  logcnlem5  26689
  Copyright terms: Public domain W3C validator