Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpadval Structured version   Visualization version   GIF version

Theorem lpadval 34643
Description: Value of the leftpad function. (Contributed by Thierry Arnoux, 7-Aug-2023.)
Hypotheses
Ref Expression
lpadval.1 (𝜑𝐿 ∈ ℕ0)
lpadval.2 (𝜑𝑊 ∈ Word 𝑆)
lpadval.3 (𝜑𝐶𝑆)
Assertion
Ref Expression
lpadval (𝜑 → ((𝐶 leftpad 𝑊)‘𝐿) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊))

Proof of Theorem lpadval
Dummy variables 𝑐 𝑙 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lpad 34642 . . . 4 leftpad = (𝑐 ∈ V, 𝑤 ∈ V ↦ (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) ++ 𝑤)))
21a1i 11 . . 3 (𝜑 → leftpad = (𝑐 ∈ V, 𝑤 ∈ V ↦ (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) ++ 𝑤))))
3 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑐 = 𝐶𝑤 = 𝑊)) → 𝑤 = 𝑊)
43fveq2d 6830 . . . . . . . 8 ((𝜑 ∧ (𝑐 = 𝐶𝑤 = 𝑊)) → (♯‘𝑤) = (♯‘𝑊))
54oveq2d 7369 . . . . . . 7 ((𝜑 ∧ (𝑐 = 𝐶𝑤 = 𝑊)) → (𝑙 − (♯‘𝑤)) = (𝑙 − (♯‘𝑊)))
65oveq2d 7369 . . . . . 6 ((𝜑 ∧ (𝑐 = 𝐶𝑤 = 𝑊)) → (0..^(𝑙 − (♯‘𝑤))) = (0..^(𝑙 − (♯‘𝑊))))
7 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑐 = 𝐶𝑤 = 𝑊)) → 𝑐 = 𝐶)
87sneqd 4591 . . . . . 6 ((𝜑 ∧ (𝑐 = 𝐶𝑤 = 𝑊)) → {𝑐} = {𝐶})
96, 8xpeq12d 5654 . . . . 5 ((𝜑 ∧ (𝑐 = 𝐶𝑤 = 𝑊)) → ((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) = ((0..^(𝑙 − (♯‘𝑊))) × {𝐶}))
109, 3oveq12d 7371 . . . 4 ((𝜑 ∧ (𝑐 = 𝐶𝑤 = 𝑊)) → (((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) ++ 𝑤) = (((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) ++ 𝑊))
1110mpteq2dv 5189 . . 3 ((𝜑 ∧ (𝑐 = 𝐶𝑤 = 𝑊)) → (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) ++ 𝑤)) = (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)))
12 lpadval.3 . . . 4 (𝜑𝐶𝑆)
1312elexd 3462 . . 3 (𝜑𝐶 ∈ V)
14 lpadval.2 . . . 4 (𝜑𝑊 ∈ Word 𝑆)
1514elexd 3462 . . 3 (𝜑𝑊 ∈ V)
16 nn0ex 12408 . . . . 5 0 ∈ V
1716a1i 11 . . . 4 (𝜑 → ℕ0 ∈ V)
1817mptexd 7164 . . 3 (𝜑 → (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)) ∈ V)
192, 11, 13, 15, 18ovmpod 7505 . 2 (𝜑 → (𝐶 leftpad 𝑊) = (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)))
20 simpr 484 . . . . . 6 ((𝜑𝑙 = 𝐿) → 𝑙 = 𝐿)
2120oveq1d 7368 . . . . 5 ((𝜑𝑙 = 𝐿) → (𝑙 − (♯‘𝑊)) = (𝐿 − (♯‘𝑊)))
2221oveq2d 7369 . . . 4 ((𝜑𝑙 = 𝐿) → (0..^(𝑙 − (♯‘𝑊))) = (0..^(𝐿 − (♯‘𝑊))))
2322xpeq1d 5652 . . 3 ((𝜑𝑙 = 𝐿) → ((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) = ((0..^(𝐿 − (♯‘𝑊))) × {𝐶}))
2423oveq1d 7368 . 2 ((𝜑𝑙 = 𝐿) → (((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) ++ 𝑊) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊))
25 lpadval.1 . 2 (𝜑𝐿 ∈ ℕ0)
26 ovexd 7388 . 2 (𝜑 → (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊) ∈ V)
2719, 24, 25, 26fvmptd 6941 1 (𝜑 → ((𝐶 leftpad 𝑊)‘𝐿) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  {csn 4579  cmpt 5176   × cxp 5621  cfv 6486  (class class class)co 7353  cmpo 7355  0cc0 11028  cmin 11365  0cn0 12402  ..^cfzo 13575  chash 14255  Word cword 14438   ++ cconcat 14495   leftpad clpad 34641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-1cn 11086  ax-addcl 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-nn 12147  df-n0 12403  df-lpad 34642
This theorem is referenced by:  lpadlen1  34646  lpadlen2  34648  lpadleft  34650  lpadright  34651
  Copyright terms: Public domain W3C validator