| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lpadval | Structured version Visualization version GIF version | ||
| Description: Value of the leftpad function. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
| Ref | Expression |
|---|---|
| lpadval.1 | ⊢ (𝜑 → 𝐿 ∈ ℕ0) |
| lpadval.2 | ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) |
| lpadval.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| lpadval | ⊢ (𝜑 → ((𝐶 leftpad 𝑊)‘𝐿) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lpad 34666 | . . . 4 ⊢ leftpad = (𝑐 ∈ V, 𝑤 ∈ V ↦ (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) ++ 𝑤))) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → leftpad = (𝑐 ∈ V, 𝑤 ∈ V ↦ (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) ++ 𝑤)))) |
| 3 | simprr 772 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑤 = 𝑊)) → 𝑤 = 𝑊) | |
| 4 | 3 | fveq2d 6862 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑤 = 𝑊)) → (♯‘𝑤) = (♯‘𝑊)) |
| 5 | 4 | oveq2d 7403 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑤 = 𝑊)) → (𝑙 − (♯‘𝑤)) = (𝑙 − (♯‘𝑊))) |
| 6 | 5 | oveq2d 7403 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑤 = 𝑊)) → (0..^(𝑙 − (♯‘𝑤))) = (0..^(𝑙 − (♯‘𝑊)))) |
| 7 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑤 = 𝑊)) → 𝑐 = 𝐶) | |
| 8 | 7 | sneqd 4601 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑤 = 𝑊)) → {𝑐} = {𝐶}) |
| 9 | 6, 8 | xpeq12d 5669 | . . . . 5 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑤 = 𝑊)) → ((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) = ((0..^(𝑙 − (♯‘𝑊))) × {𝐶})) |
| 10 | 9, 3 | oveq12d 7405 | . . . 4 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑤 = 𝑊)) → (((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) ++ 𝑤) = (((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)) |
| 11 | 10 | mpteq2dv 5201 | . . 3 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑤 = 𝑊)) → (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) ++ 𝑤)) = (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) ++ 𝑊))) |
| 12 | lpadval.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
| 13 | 12 | elexd 3471 | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) |
| 14 | lpadval.2 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) | |
| 15 | 14 | elexd 3471 | . . 3 ⊢ (𝜑 → 𝑊 ∈ V) |
| 16 | nn0ex 12448 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 17 | 16 | a1i 11 | . . . 4 ⊢ (𝜑 → ℕ0 ∈ V) |
| 18 | 17 | mptexd 7198 | . . 3 ⊢ (𝜑 → (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)) ∈ V) |
| 19 | 2, 11, 13, 15, 18 | ovmpod 7541 | . 2 ⊢ (𝜑 → (𝐶 leftpad 𝑊) = (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) ++ 𝑊))) |
| 20 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑙 = 𝐿) → 𝑙 = 𝐿) | |
| 21 | 20 | oveq1d 7402 | . . . . 5 ⊢ ((𝜑 ∧ 𝑙 = 𝐿) → (𝑙 − (♯‘𝑊)) = (𝐿 − (♯‘𝑊))) |
| 22 | 21 | oveq2d 7403 | . . . 4 ⊢ ((𝜑 ∧ 𝑙 = 𝐿) → (0..^(𝑙 − (♯‘𝑊))) = (0..^(𝐿 − (♯‘𝑊)))) |
| 23 | 22 | xpeq1d 5667 | . . 3 ⊢ ((𝜑 ∧ 𝑙 = 𝐿) → ((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) = ((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) |
| 24 | 23 | oveq1d 7402 | . 2 ⊢ ((𝜑 ∧ 𝑙 = 𝐿) → (((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) ++ 𝑊) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)) |
| 25 | lpadval.1 | . 2 ⊢ (𝜑 → 𝐿 ∈ ℕ0) | |
| 26 | ovexd 7422 | . 2 ⊢ (𝜑 → (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊) ∈ V) | |
| 27 | 19, 24, 25, 26 | fvmptd 6975 | 1 ⊢ (𝜑 → ((𝐶 leftpad 𝑊)‘𝐿) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 {csn 4589 ↦ cmpt 5188 × cxp 5636 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 0cc0 11068 − cmin 11405 ℕ0cn0 12442 ..^cfzo 13615 ♯chash 14295 Word cword 14478 ++ cconcat 14535 leftpad clpad 34665 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 df-n0 12443 df-lpad 34666 |
| This theorem is referenced by: lpadlen1 34670 lpadlen2 34672 lpadleft 34674 lpadright 34675 |
| Copyright terms: Public domain | W3C validator |