Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpadval Structured version   Visualization version   GIF version

Theorem lpadval 34710
Description: Value of the leftpad function. (Contributed by Thierry Arnoux, 7-Aug-2023.)
Hypotheses
Ref Expression
lpadval.1 (𝜑𝐿 ∈ ℕ0)
lpadval.2 (𝜑𝑊 ∈ Word 𝑆)
lpadval.3 (𝜑𝐶𝑆)
Assertion
Ref Expression
lpadval (𝜑 → ((𝐶 leftpad 𝑊)‘𝐿) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊))

Proof of Theorem lpadval
Dummy variables 𝑐 𝑙 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lpad 34709 . . . 4 leftpad = (𝑐 ∈ V, 𝑤 ∈ V ↦ (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) ++ 𝑤)))
21a1i 11 . . 3 (𝜑 → leftpad = (𝑐 ∈ V, 𝑤 ∈ V ↦ (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) ++ 𝑤))))
3 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑐 = 𝐶𝑤 = 𝑊)) → 𝑤 = 𝑊)
43fveq2d 6832 . . . . . . . 8 ((𝜑 ∧ (𝑐 = 𝐶𝑤 = 𝑊)) → (♯‘𝑤) = (♯‘𝑊))
54oveq2d 7368 . . . . . . 7 ((𝜑 ∧ (𝑐 = 𝐶𝑤 = 𝑊)) → (𝑙 − (♯‘𝑤)) = (𝑙 − (♯‘𝑊)))
65oveq2d 7368 . . . . . 6 ((𝜑 ∧ (𝑐 = 𝐶𝑤 = 𝑊)) → (0..^(𝑙 − (♯‘𝑤))) = (0..^(𝑙 − (♯‘𝑊))))
7 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑐 = 𝐶𝑤 = 𝑊)) → 𝑐 = 𝐶)
87sneqd 4587 . . . . . 6 ((𝜑 ∧ (𝑐 = 𝐶𝑤 = 𝑊)) → {𝑐} = {𝐶})
96, 8xpeq12d 5650 . . . . 5 ((𝜑 ∧ (𝑐 = 𝐶𝑤 = 𝑊)) → ((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) = ((0..^(𝑙 − (♯‘𝑊))) × {𝐶}))
109, 3oveq12d 7370 . . . 4 ((𝜑 ∧ (𝑐 = 𝐶𝑤 = 𝑊)) → (((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) ++ 𝑤) = (((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) ++ 𝑊))
1110mpteq2dv 5187 . . 3 ((𝜑 ∧ (𝑐 = 𝐶𝑤 = 𝑊)) → (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) ++ 𝑤)) = (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)))
12 lpadval.3 . . . 4 (𝜑𝐶𝑆)
1312elexd 3461 . . 3 (𝜑𝐶 ∈ V)
14 lpadval.2 . . . 4 (𝜑𝑊 ∈ Word 𝑆)
1514elexd 3461 . . 3 (𝜑𝑊 ∈ V)
16 nn0ex 12394 . . . . 5 0 ∈ V
1716a1i 11 . . . 4 (𝜑 → ℕ0 ∈ V)
1817mptexd 7164 . . 3 (𝜑 → (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)) ∈ V)
192, 11, 13, 15, 18ovmpod 7504 . 2 (𝜑 → (𝐶 leftpad 𝑊) = (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)))
20 simpr 484 . . . . . 6 ((𝜑𝑙 = 𝐿) → 𝑙 = 𝐿)
2120oveq1d 7367 . . . . 5 ((𝜑𝑙 = 𝐿) → (𝑙 − (♯‘𝑊)) = (𝐿 − (♯‘𝑊)))
2221oveq2d 7368 . . . 4 ((𝜑𝑙 = 𝐿) → (0..^(𝑙 − (♯‘𝑊))) = (0..^(𝐿 − (♯‘𝑊))))
2322xpeq1d 5648 . . 3 ((𝜑𝑙 = 𝐿) → ((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) = ((0..^(𝐿 − (♯‘𝑊))) × {𝐶}))
2423oveq1d 7367 . 2 ((𝜑𝑙 = 𝐿) → (((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) ++ 𝑊) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊))
25 lpadval.1 . 2 (𝜑𝐿 ∈ ℕ0)
26 ovexd 7387 . 2 (𝜑 → (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊) ∈ V)
2719, 24, 25, 26fvmptd 6942 1 (𝜑 → ((𝐶 leftpad 𝑊)‘𝐿) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  {csn 4575  cmpt 5174   × cxp 5617  cfv 6486  (class class class)co 7352  cmpo 7354  0cc0 11013  cmin 11351  0cn0 12388  ..^cfzo 13556  chash 14239  Word cword 14422   ++ cconcat 14479   leftpad clpad 34708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-1cn 11071  ax-addcl 11073
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-nn 12133  df-n0 12389  df-lpad 34709
This theorem is referenced by:  lpadlen1  34713  lpadlen2  34715  lpadleft  34717  lpadright  34718
  Copyright terms: Public domain W3C validator