| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lpadval | Structured version Visualization version GIF version | ||
| Description: Value of the leftpad function. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
| Ref | Expression |
|---|---|
| lpadval.1 | ⊢ (𝜑 → 𝐿 ∈ ℕ0) |
| lpadval.2 | ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) |
| lpadval.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| lpadval | ⊢ (𝜑 → ((𝐶 leftpad 𝑊)‘𝐿) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lpad 34709 | . . . 4 ⊢ leftpad = (𝑐 ∈ V, 𝑤 ∈ V ↦ (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) ++ 𝑤))) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → leftpad = (𝑐 ∈ V, 𝑤 ∈ V ↦ (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) ++ 𝑤)))) |
| 3 | simprr 772 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑤 = 𝑊)) → 𝑤 = 𝑊) | |
| 4 | 3 | fveq2d 6832 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑤 = 𝑊)) → (♯‘𝑤) = (♯‘𝑊)) |
| 5 | 4 | oveq2d 7368 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑤 = 𝑊)) → (𝑙 − (♯‘𝑤)) = (𝑙 − (♯‘𝑊))) |
| 6 | 5 | oveq2d 7368 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑤 = 𝑊)) → (0..^(𝑙 − (♯‘𝑤))) = (0..^(𝑙 − (♯‘𝑊)))) |
| 7 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑤 = 𝑊)) → 𝑐 = 𝐶) | |
| 8 | 7 | sneqd 4587 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑤 = 𝑊)) → {𝑐} = {𝐶}) |
| 9 | 6, 8 | xpeq12d 5650 | . . . . 5 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑤 = 𝑊)) → ((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) = ((0..^(𝑙 − (♯‘𝑊))) × {𝐶})) |
| 10 | 9, 3 | oveq12d 7370 | . . . 4 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑤 = 𝑊)) → (((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) ++ 𝑤) = (((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)) |
| 11 | 10 | mpteq2dv 5187 | . . 3 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑤 = 𝑊)) → (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) ++ 𝑤)) = (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) ++ 𝑊))) |
| 12 | lpadval.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
| 13 | 12 | elexd 3461 | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) |
| 14 | lpadval.2 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) | |
| 15 | 14 | elexd 3461 | . . 3 ⊢ (𝜑 → 𝑊 ∈ V) |
| 16 | nn0ex 12394 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 17 | 16 | a1i 11 | . . . 4 ⊢ (𝜑 → ℕ0 ∈ V) |
| 18 | 17 | mptexd 7164 | . . 3 ⊢ (𝜑 → (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)) ∈ V) |
| 19 | 2, 11, 13, 15, 18 | ovmpod 7504 | . 2 ⊢ (𝜑 → (𝐶 leftpad 𝑊) = (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) ++ 𝑊))) |
| 20 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑙 = 𝐿) → 𝑙 = 𝐿) | |
| 21 | 20 | oveq1d 7367 | . . . . 5 ⊢ ((𝜑 ∧ 𝑙 = 𝐿) → (𝑙 − (♯‘𝑊)) = (𝐿 − (♯‘𝑊))) |
| 22 | 21 | oveq2d 7368 | . . . 4 ⊢ ((𝜑 ∧ 𝑙 = 𝐿) → (0..^(𝑙 − (♯‘𝑊))) = (0..^(𝐿 − (♯‘𝑊)))) |
| 23 | 22 | xpeq1d 5648 | . . 3 ⊢ ((𝜑 ∧ 𝑙 = 𝐿) → ((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) = ((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) |
| 24 | 23 | oveq1d 7367 | . 2 ⊢ ((𝜑 ∧ 𝑙 = 𝐿) → (((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) ++ 𝑊) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)) |
| 25 | lpadval.1 | . 2 ⊢ (𝜑 → 𝐿 ∈ ℕ0) | |
| 26 | ovexd 7387 | . 2 ⊢ (𝜑 → (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊) ∈ V) | |
| 27 | 19, 24, 25, 26 | fvmptd 6942 | 1 ⊢ (𝜑 → ((𝐶 leftpad 𝑊)‘𝐿) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 {csn 4575 ↦ cmpt 5174 × cxp 5617 ‘cfv 6486 (class class class)co 7352 ∈ cmpo 7354 0cc0 11013 − cmin 11351 ℕ0cn0 12388 ..^cfzo 13556 ♯chash 14239 Word cword 14422 ++ cconcat 14479 leftpad clpad 34708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-1cn 11071 ax-addcl 11073 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-nn 12133 df-n0 12389 df-lpad 34709 |
| This theorem is referenced by: lpadlen1 34713 lpadlen2 34715 lpadleft 34717 lpadright 34718 |
| Copyright terms: Public domain | W3C validator |