Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lpadval | Structured version Visualization version GIF version |
Description: Value of the leftpad function. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
Ref | Expression |
---|---|
lpadval.1 | ⊢ (𝜑 → 𝐿 ∈ ℕ0) |
lpadval.2 | ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) |
lpadval.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
Ref | Expression |
---|---|
lpadval | ⊢ (𝜑 → ((𝐶 leftpad 𝑊)‘𝐿) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lpad 32655 | . . . 4 ⊢ leftpad = (𝑐 ∈ V, 𝑤 ∈ V ↦ (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) ++ 𝑤))) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → leftpad = (𝑐 ∈ V, 𝑤 ∈ V ↦ (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) ++ 𝑤)))) |
3 | simprr 770 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑤 = 𝑊)) → 𝑤 = 𝑊) | |
4 | 3 | fveq2d 6778 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑤 = 𝑊)) → (♯‘𝑤) = (♯‘𝑊)) |
5 | 4 | oveq2d 7291 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑤 = 𝑊)) → (𝑙 − (♯‘𝑤)) = (𝑙 − (♯‘𝑊))) |
6 | 5 | oveq2d 7291 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑤 = 𝑊)) → (0..^(𝑙 − (♯‘𝑤))) = (0..^(𝑙 − (♯‘𝑊)))) |
7 | simprl 768 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑤 = 𝑊)) → 𝑐 = 𝐶) | |
8 | 7 | sneqd 4573 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑤 = 𝑊)) → {𝑐} = {𝐶}) |
9 | 6, 8 | xpeq12d 5620 | . . . . 5 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑤 = 𝑊)) → ((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) = ((0..^(𝑙 − (♯‘𝑊))) × {𝐶})) |
10 | 9, 3 | oveq12d 7293 | . . . 4 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑤 = 𝑊)) → (((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) ++ 𝑤) = (((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)) |
11 | 10 | mpteq2dv 5176 | . . 3 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑤 = 𝑊)) → (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) ++ 𝑤)) = (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) ++ 𝑊))) |
12 | lpadval.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
13 | 12 | elexd 3452 | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) |
14 | lpadval.2 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) | |
15 | 14 | elexd 3452 | . . 3 ⊢ (𝜑 → 𝑊 ∈ V) |
16 | nn0ex 12239 | . . . . 5 ⊢ ℕ0 ∈ V | |
17 | 16 | a1i 11 | . . . 4 ⊢ (𝜑 → ℕ0 ∈ V) |
18 | 17 | mptexd 7100 | . . 3 ⊢ (𝜑 → (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)) ∈ V) |
19 | 2, 11, 13, 15, 18 | ovmpod 7425 | . 2 ⊢ (𝜑 → (𝐶 leftpad 𝑊) = (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) ++ 𝑊))) |
20 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑙 = 𝐿) → 𝑙 = 𝐿) | |
21 | 20 | oveq1d 7290 | . . . . 5 ⊢ ((𝜑 ∧ 𝑙 = 𝐿) → (𝑙 − (♯‘𝑊)) = (𝐿 − (♯‘𝑊))) |
22 | 21 | oveq2d 7291 | . . . 4 ⊢ ((𝜑 ∧ 𝑙 = 𝐿) → (0..^(𝑙 − (♯‘𝑊))) = (0..^(𝐿 − (♯‘𝑊)))) |
23 | 22 | xpeq1d 5618 | . . 3 ⊢ ((𝜑 ∧ 𝑙 = 𝐿) → ((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) = ((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) |
24 | 23 | oveq1d 7290 | . 2 ⊢ ((𝜑 ∧ 𝑙 = 𝐿) → (((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) ++ 𝑊) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)) |
25 | lpadval.1 | . 2 ⊢ (𝜑 → 𝐿 ∈ ℕ0) | |
26 | ovexd 7310 | . 2 ⊢ (𝜑 → (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊) ∈ V) | |
27 | 19, 24, 25, 26 | fvmptd 6882 | 1 ⊢ (𝜑 → ((𝐶 leftpad 𝑊)‘𝐿) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 {csn 4561 ↦ cmpt 5157 × cxp 5587 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 0cc0 10871 − cmin 11205 ℕ0cn0 12233 ..^cfzo 13382 ♯chash 14044 Word cword 14217 ++ cconcat 14273 leftpad clpad 32654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-1cn 10929 ax-addcl 10931 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-nn 11974 df-n0 12234 df-lpad 32655 |
This theorem is referenced by: lpadlen1 32659 lpadlen2 32661 lpadleft 32663 lpadright 32664 |
Copyright terms: Public domain | W3C validator |