Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpadval Structured version   Visualization version   GIF version

Theorem lpadval 34667
Description: Value of the leftpad function. (Contributed by Thierry Arnoux, 7-Aug-2023.)
Hypotheses
Ref Expression
lpadval.1 (𝜑𝐿 ∈ ℕ0)
lpadval.2 (𝜑𝑊 ∈ Word 𝑆)
lpadval.3 (𝜑𝐶𝑆)
Assertion
Ref Expression
lpadval (𝜑 → ((𝐶 leftpad 𝑊)‘𝐿) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊))

Proof of Theorem lpadval
Dummy variables 𝑐 𝑙 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lpad 34666 . . . 4 leftpad = (𝑐 ∈ V, 𝑤 ∈ V ↦ (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) ++ 𝑤)))
21a1i 11 . . 3 (𝜑 → leftpad = (𝑐 ∈ V, 𝑤 ∈ V ↦ (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) ++ 𝑤))))
3 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑐 = 𝐶𝑤 = 𝑊)) → 𝑤 = 𝑊)
43fveq2d 6862 . . . . . . . 8 ((𝜑 ∧ (𝑐 = 𝐶𝑤 = 𝑊)) → (♯‘𝑤) = (♯‘𝑊))
54oveq2d 7403 . . . . . . 7 ((𝜑 ∧ (𝑐 = 𝐶𝑤 = 𝑊)) → (𝑙 − (♯‘𝑤)) = (𝑙 − (♯‘𝑊)))
65oveq2d 7403 . . . . . 6 ((𝜑 ∧ (𝑐 = 𝐶𝑤 = 𝑊)) → (0..^(𝑙 − (♯‘𝑤))) = (0..^(𝑙 − (♯‘𝑊))))
7 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑐 = 𝐶𝑤 = 𝑊)) → 𝑐 = 𝐶)
87sneqd 4601 . . . . . 6 ((𝜑 ∧ (𝑐 = 𝐶𝑤 = 𝑊)) → {𝑐} = {𝐶})
96, 8xpeq12d 5669 . . . . 5 ((𝜑 ∧ (𝑐 = 𝐶𝑤 = 𝑊)) → ((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) = ((0..^(𝑙 − (♯‘𝑊))) × {𝐶}))
109, 3oveq12d 7405 . . . 4 ((𝜑 ∧ (𝑐 = 𝐶𝑤 = 𝑊)) → (((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) ++ 𝑤) = (((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) ++ 𝑊))
1110mpteq2dv 5201 . . 3 ((𝜑 ∧ (𝑐 = 𝐶𝑤 = 𝑊)) → (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) ++ 𝑤)) = (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)))
12 lpadval.3 . . . 4 (𝜑𝐶𝑆)
1312elexd 3471 . . 3 (𝜑𝐶 ∈ V)
14 lpadval.2 . . . 4 (𝜑𝑊 ∈ Word 𝑆)
1514elexd 3471 . . 3 (𝜑𝑊 ∈ V)
16 nn0ex 12448 . . . . 5 0 ∈ V
1716a1i 11 . . . 4 (𝜑 → ℕ0 ∈ V)
1817mptexd 7198 . . 3 (𝜑 → (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)) ∈ V)
192, 11, 13, 15, 18ovmpod 7541 . 2 (𝜑 → (𝐶 leftpad 𝑊) = (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)))
20 simpr 484 . . . . . 6 ((𝜑𝑙 = 𝐿) → 𝑙 = 𝐿)
2120oveq1d 7402 . . . . 5 ((𝜑𝑙 = 𝐿) → (𝑙 − (♯‘𝑊)) = (𝐿 − (♯‘𝑊)))
2221oveq2d 7403 . . . 4 ((𝜑𝑙 = 𝐿) → (0..^(𝑙 − (♯‘𝑊))) = (0..^(𝐿 − (♯‘𝑊))))
2322xpeq1d 5667 . . 3 ((𝜑𝑙 = 𝐿) → ((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) = ((0..^(𝐿 − (♯‘𝑊))) × {𝐶}))
2423oveq1d 7402 . 2 ((𝜑𝑙 = 𝐿) → (((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) ++ 𝑊) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊))
25 lpadval.1 . 2 (𝜑𝐿 ∈ ℕ0)
26 ovexd 7422 . 2 (𝜑 → (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊) ∈ V)
2719, 24, 25, 26fvmptd 6975 1 (𝜑 → ((𝐶 leftpad 𝑊)‘𝐿) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  {csn 4589  cmpt 5188   × cxp 5636  cfv 6511  (class class class)co 7387  cmpo 7389  0cc0 11068  cmin 11405  0cn0 12442  ..^cfzo 13615  chash 14295  Word cword 14478   ++ cconcat 14535   leftpad clpad 34665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-1cn 11126  ax-addcl 11128
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-nn 12187  df-n0 12443  df-lpad 34666
This theorem is referenced by:  lpadlen1  34670  lpadlen2  34672  lpadleft  34674  lpadright  34675
  Copyright terms: Public domain W3C validator