Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lpadval | Structured version Visualization version GIF version |
Description: Value of the leftpad function. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
Ref | Expression |
---|---|
lpadval.1 | ⊢ (𝜑 → 𝐿 ∈ ℕ0) |
lpadval.2 | ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) |
lpadval.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
Ref | Expression |
---|---|
lpadval | ⊢ (𝜑 → ((𝐶 leftpad 𝑊)‘𝐿) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lpad 32555 | . . . 4 ⊢ leftpad = (𝑐 ∈ V, 𝑤 ∈ V ↦ (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) ++ 𝑤))) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → leftpad = (𝑐 ∈ V, 𝑤 ∈ V ↦ (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) ++ 𝑤)))) |
3 | simprr 769 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑤 = 𝑊)) → 𝑤 = 𝑊) | |
4 | 3 | fveq2d 6760 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑤 = 𝑊)) → (♯‘𝑤) = (♯‘𝑊)) |
5 | 4 | oveq2d 7271 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑤 = 𝑊)) → (𝑙 − (♯‘𝑤)) = (𝑙 − (♯‘𝑊))) |
6 | 5 | oveq2d 7271 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑤 = 𝑊)) → (0..^(𝑙 − (♯‘𝑤))) = (0..^(𝑙 − (♯‘𝑊)))) |
7 | simprl 767 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑤 = 𝑊)) → 𝑐 = 𝐶) | |
8 | 7 | sneqd 4570 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑤 = 𝑊)) → {𝑐} = {𝐶}) |
9 | 6, 8 | xpeq12d 5611 | . . . . 5 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑤 = 𝑊)) → ((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) = ((0..^(𝑙 − (♯‘𝑊))) × {𝐶})) |
10 | 9, 3 | oveq12d 7273 | . . . 4 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑤 = 𝑊)) → (((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) ++ 𝑤) = (((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)) |
11 | 10 | mpteq2dv 5172 | . . 3 ⊢ ((𝜑 ∧ (𝑐 = 𝐶 ∧ 𝑤 = 𝑊)) → (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) ++ 𝑤)) = (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) ++ 𝑊))) |
12 | lpadval.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
13 | 12 | elexd 3442 | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) |
14 | lpadval.2 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) | |
15 | 14 | elexd 3442 | . . 3 ⊢ (𝜑 → 𝑊 ∈ V) |
16 | nn0ex 12169 | . . . . 5 ⊢ ℕ0 ∈ V | |
17 | 16 | a1i 11 | . . . 4 ⊢ (𝜑 → ℕ0 ∈ V) |
18 | 17 | mptexd 7082 | . . 3 ⊢ (𝜑 → (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)) ∈ V) |
19 | 2, 11, 13, 15, 18 | ovmpod 7403 | . 2 ⊢ (𝜑 → (𝐶 leftpad 𝑊) = (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) ++ 𝑊))) |
20 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑙 = 𝐿) → 𝑙 = 𝐿) | |
21 | 20 | oveq1d 7270 | . . . . 5 ⊢ ((𝜑 ∧ 𝑙 = 𝐿) → (𝑙 − (♯‘𝑊)) = (𝐿 − (♯‘𝑊))) |
22 | 21 | oveq2d 7271 | . . . 4 ⊢ ((𝜑 ∧ 𝑙 = 𝐿) → (0..^(𝑙 − (♯‘𝑊))) = (0..^(𝐿 − (♯‘𝑊)))) |
23 | 22 | xpeq1d 5609 | . . 3 ⊢ ((𝜑 ∧ 𝑙 = 𝐿) → ((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) = ((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) |
24 | 23 | oveq1d 7270 | . 2 ⊢ ((𝜑 ∧ 𝑙 = 𝐿) → (((0..^(𝑙 − (♯‘𝑊))) × {𝐶}) ++ 𝑊) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)) |
25 | lpadval.1 | . 2 ⊢ (𝜑 → 𝐿 ∈ ℕ0) | |
26 | ovexd 7290 | . 2 ⊢ (𝜑 → (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊) ∈ V) | |
27 | 19, 24, 25, 26 | fvmptd 6864 | 1 ⊢ (𝜑 → ((𝐶 leftpad 𝑊)‘𝐿) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 {csn 4558 ↦ cmpt 5153 × cxp 5578 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 0cc0 10802 − cmin 11135 ℕ0cn0 12163 ..^cfzo 13311 ♯chash 13972 Word cword 14145 ++ cconcat 14201 leftpad clpad 32554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-1cn 10860 ax-addcl 10862 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-nn 11904 df-n0 12164 df-lpad 32555 |
This theorem is referenced by: lpadlen1 32559 lpadlen2 32561 lpadleft 32563 lpadright 32564 |
Copyright terms: Public domain | W3C validator |