Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpadright Structured version   Visualization version   GIF version

Theorem lpadright 33696
Description: The suffix of a left-padded word the original word 𝑊. (Contributed by Thierry Arnoux, 7-Aug-2023.)
Hypotheses
Ref Expression
lpadlen.1 (𝜑𝐿 ∈ ℕ0)
lpadlen.2 (𝜑𝑊 ∈ Word 𝑆)
lpadlen.3 (𝜑𝐶𝑆)
lpadright.1 (𝜑𝑀 = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊))))
lpadright.2 (𝜑𝑁 ∈ (0..^(♯‘𝑊)))
Assertion
Ref Expression
lpadright (𝜑 → (((𝐶 leftpad 𝑊)‘𝐿)‘(𝑁 + 𝑀)) = (𝑊𝑁))

Proof of Theorem lpadright
StepHypRef Expression
1 lpadlen.1 . . . 4 (𝜑𝐿 ∈ ℕ0)
2 lpadlen.2 . . . 4 (𝜑𝑊 ∈ Word 𝑆)
3 lpadlen.3 . . . 4 (𝜑𝐶𝑆)
41, 2, 3lpadval 33688 . . 3 (𝜑 → ((𝐶 leftpad 𝑊)‘𝐿) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊))
54fveq1d 6894 . 2 (𝜑 → (((𝐶 leftpad 𝑊)‘𝐿)‘(𝑁 + 𝑀)) = ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘(𝑁 + 𝑀)))
6 eqeq2 2745 . . . . . 6 (0 = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊))) → ((♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = 0 ↔ (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊)))))
7 eqeq2 2745 . . . . . 6 ((𝐿 − (♯‘𝑊)) = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊))) → ((♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = (𝐿 − (♯‘𝑊)) ↔ (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊)))))
81adantr 482 . . . . . . . . 9 ((𝜑𝐿 ≤ (♯‘𝑊)) → 𝐿 ∈ ℕ0)
92adantr 482 . . . . . . . . 9 ((𝜑𝐿 ≤ (♯‘𝑊)) → 𝑊 ∈ Word 𝑆)
103adantr 482 . . . . . . . . 9 ((𝜑𝐿 ≤ (♯‘𝑊)) → 𝐶𝑆)
11 simpr 486 . . . . . . . . 9 ((𝜑𝐿 ≤ (♯‘𝑊)) → 𝐿 ≤ (♯‘𝑊))
128, 9, 10, 11lpadlem3 33690 . . . . . . . 8 ((𝜑𝐿 ≤ (♯‘𝑊)) → ((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) = ∅)
1312fveq2d 6896 . . . . . . 7 ((𝜑𝐿 ≤ (♯‘𝑊)) → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = (♯‘∅))
14 hash0 14327 . . . . . . 7 (♯‘∅) = 0
1513, 14eqtrdi 2789 . . . . . 6 ((𝜑𝐿 ≤ (♯‘𝑊)) → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = 0)
161adantr 482 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → 𝐿 ∈ ℕ0)
172adantr 482 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → 𝑊 ∈ Word 𝑆)
183adantr 482 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → 𝐶𝑆)
19 lencl 14483 . . . . . . . . . . 11 (𝑊 ∈ Word 𝑆 → (♯‘𝑊) ∈ ℕ0)
202, 19syl 17 . . . . . . . . . 10 (𝜑 → (♯‘𝑊) ∈ ℕ0)
2120nn0red 12533 . . . . . . . . 9 (𝜑 → (♯‘𝑊) ∈ ℝ)
2221adantr 482 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → (♯‘𝑊) ∈ ℝ)
231nn0red 12533 . . . . . . . . 9 (𝜑𝐿 ∈ ℝ)
2423adantr 482 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → 𝐿 ∈ ℝ)
2521, 23ltnled 11361 . . . . . . . . 9 (𝜑 → ((♯‘𝑊) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑊)))
2625biimpar 479 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → (♯‘𝑊) < 𝐿)
2722, 24, 26ltled 11362 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → (♯‘𝑊) ≤ 𝐿)
2816, 17, 18, 27lpadlem2 33692 . . . . . 6 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = (𝐿 − (♯‘𝑊)))
296, 7, 15, 28ifbothda 4567 . . . . 5 (𝜑 → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊))))
30 lpadright.1 . . . . 5 (𝜑𝑀 = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊))))
3129, 30eqtr4d 2776 . . . 4 (𝜑 → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = 𝑀)
3231oveq2d 7425 . . 3 (𝜑 → (𝑁 + (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶}))) = (𝑁 + 𝑀))
3332fveq2d 6896 . 2 (𝜑 → ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘(𝑁 + (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})))) = ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘(𝑁 + 𝑀)))
343lpadlem1 33689 . . 3 (𝜑 → ((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ∈ Word 𝑆)
35 lpadright.2 . . 3 (𝜑𝑁 ∈ (0..^(♯‘𝑊)))
36 ccatval3 14529 . . 3 ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ∈ Word 𝑆𝑊 ∈ Word 𝑆𝑁 ∈ (0..^(♯‘𝑊))) → ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘(𝑁 + (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})))) = (𝑊𝑁))
3734, 2, 35, 36syl3anc 1372 . 2 (𝜑 → ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘(𝑁 + (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})))) = (𝑊𝑁))
385, 33, 373eqtr2d 2779 1 (𝜑 → (((𝐶 leftpad 𝑊)‘𝐿)‘(𝑁 + 𝑀)) = (𝑊𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  c0 4323  ifcif 4529  {csn 4629   class class class wbr 5149   × cxp 5675  cfv 6544  (class class class)co 7409  cr 11109  0cc0 11110   + caddc 11113   < clt 11248  cle 11249  cmin 11444  0cn0 12472  ..^cfzo 13627  chash 14290  Word cword 14464   ++ cconcat 14520   leftpad clpad 33686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-oadd 8470  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-dju 9896  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-fzo 13628  df-hash 14291  df-word 14465  df-concat 14521  df-lpad 33687
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator