Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpadright Structured version   Visualization version   GIF version

Theorem lpadright 34721
Description: The suffix of a left-padded word the original word 𝑊. (Contributed by Thierry Arnoux, 7-Aug-2023.)
Hypotheses
Ref Expression
lpadlen.1 (𝜑𝐿 ∈ ℕ0)
lpadlen.2 (𝜑𝑊 ∈ Word 𝑆)
lpadlen.3 (𝜑𝐶𝑆)
lpadright.1 (𝜑𝑀 = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊))))
lpadright.2 (𝜑𝑁 ∈ (0..^(♯‘𝑊)))
Assertion
Ref Expression
lpadright (𝜑 → (((𝐶 leftpad 𝑊)‘𝐿)‘(𝑁 + 𝑀)) = (𝑊𝑁))

Proof of Theorem lpadright
StepHypRef Expression
1 lpadlen.1 . . . 4 (𝜑𝐿 ∈ ℕ0)
2 lpadlen.2 . . . 4 (𝜑𝑊 ∈ Word 𝑆)
3 lpadlen.3 . . . 4 (𝜑𝐶𝑆)
41, 2, 3lpadval 34713 . . 3 (𝜑 → ((𝐶 leftpad 𝑊)‘𝐿) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊))
54fveq1d 6883 . 2 (𝜑 → (((𝐶 leftpad 𝑊)‘𝐿)‘(𝑁 + 𝑀)) = ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘(𝑁 + 𝑀)))
6 eqeq2 2748 . . . . . 6 (0 = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊))) → ((♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = 0 ↔ (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊)))))
7 eqeq2 2748 . . . . . 6 ((𝐿 − (♯‘𝑊)) = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊))) → ((♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = (𝐿 − (♯‘𝑊)) ↔ (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊)))))
81adantr 480 . . . . . . . . 9 ((𝜑𝐿 ≤ (♯‘𝑊)) → 𝐿 ∈ ℕ0)
92adantr 480 . . . . . . . . 9 ((𝜑𝐿 ≤ (♯‘𝑊)) → 𝑊 ∈ Word 𝑆)
103adantr 480 . . . . . . . . 9 ((𝜑𝐿 ≤ (♯‘𝑊)) → 𝐶𝑆)
11 simpr 484 . . . . . . . . 9 ((𝜑𝐿 ≤ (♯‘𝑊)) → 𝐿 ≤ (♯‘𝑊))
128, 9, 10, 11lpadlem3 34715 . . . . . . . 8 ((𝜑𝐿 ≤ (♯‘𝑊)) → ((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) = ∅)
1312fveq2d 6885 . . . . . . 7 ((𝜑𝐿 ≤ (♯‘𝑊)) → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = (♯‘∅))
14 hash0 14390 . . . . . . 7 (♯‘∅) = 0
1513, 14eqtrdi 2787 . . . . . 6 ((𝜑𝐿 ≤ (♯‘𝑊)) → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = 0)
161adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → 𝐿 ∈ ℕ0)
172adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → 𝑊 ∈ Word 𝑆)
183adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → 𝐶𝑆)
19 lencl 14556 . . . . . . . . . . 11 (𝑊 ∈ Word 𝑆 → (♯‘𝑊) ∈ ℕ0)
202, 19syl 17 . . . . . . . . . 10 (𝜑 → (♯‘𝑊) ∈ ℕ0)
2120nn0red 12568 . . . . . . . . 9 (𝜑 → (♯‘𝑊) ∈ ℝ)
2221adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → (♯‘𝑊) ∈ ℝ)
231nn0red 12568 . . . . . . . . 9 (𝜑𝐿 ∈ ℝ)
2423adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → 𝐿 ∈ ℝ)
2521, 23ltnled 11387 . . . . . . . . 9 (𝜑 → ((♯‘𝑊) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑊)))
2625biimpar 477 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → (♯‘𝑊) < 𝐿)
2722, 24, 26ltled 11388 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → (♯‘𝑊) ≤ 𝐿)
2816, 17, 18, 27lpadlem2 34717 . . . . . 6 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = (𝐿 − (♯‘𝑊)))
296, 7, 15, 28ifbothda 4544 . . . . 5 (𝜑 → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊))))
30 lpadright.1 . . . . 5 (𝜑𝑀 = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊))))
3129, 30eqtr4d 2774 . . . 4 (𝜑 → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = 𝑀)
3231oveq2d 7426 . . 3 (𝜑 → (𝑁 + (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶}))) = (𝑁 + 𝑀))
3332fveq2d 6885 . 2 (𝜑 → ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘(𝑁 + (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})))) = ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘(𝑁 + 𝑀)))
343lpadlem1 34714 . . 3 (𝜑 → ((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ∈ Word 𝑆)
35 lpadright.2 . . 3 (𝜑𝑁 ∈ (0..^(♯‘𝑊)))
36 ccatval3 14602 . . 3 ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ∈ Word 𝑆𝑊 ∈ Word 𝑆𝑁 ∈ (0..^(♯‘𝑊))) → ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘(𝑁 + (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})))) = (𝑊𝑁))
3734, 2, 35, 36syl3anc 1373 . 2 (𝜑 → ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘(𝑁 + (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})))) = (𝑊𝑁))
385, 33, 373eqtr2d 2777 1 (𝜑 → (((𝐶 leftpad 𝑊)‘𝐿)‘(𝑁 + 𝑀)) = (𝑊𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  c0 4313  ifcif 4505  {csn 4606   class class class wbr 5124   × cxp 5657  cfv 6536  (class class class)co 7410  cr 11133  0cc0 11134   + caddc 11137   < clt 11274  cle 11275  cmin 11471  0cn0 12506  ..^cfzo 13676  chash 14353  Word cword 14536   ++ cconcat 14593   leftpad clpad 34711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-hash 14354  df-word 14537  df-concat 14594  df-lpad 34712
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator