Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpadright Structured version   Visualization version   GIF version

Theorem lpadright 31955
Description: The suffix of a left-padded word the original word 𝑊. (Contributed by Thierry Arnoux, 7-Aug-2023.)
Hypotheses
Ref Expression
lpadlen.1 (𝜑𝐿 ∈ ℕ0)
lpadlen.2 (𝜑𝑊 ∈ Word 𝑆)
lpadlen.3 (𝜑𝐶𝑆)
lpadright.1 (𝜑𝑀 = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊))))
lpadright.2 (𝜑𝑁 ∈ (0..^(♯‘𝑊)))
Assertion
Ref Expression
lpadright (𝜑 → (((𝐶 leftpad 𝑊)‘𝐿)‘(𝑁 + 𝑀)) = (𝑊𝑁))

Proof of Theorem lpadright
StepHypRef Expression
1 lpadlen.1 . . . 4 (𝜑𝐿 ∈ ℕ0)
2 lpadlen.2 . . . 4 (𝜑𝑊 ∈ Word 𝑆)
3 lpadlen.3 . . . 4 (𝜑𝐶𝑆)
41, 2, 3lpadval 31947 . . 3 (𝜑 → ((𝐶 leftpad 𝑊)‘𝐿) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊))
54fveq1d 6672 . 2 (𝜑 → (((𝐶 leftpad 𝑊)‘𝐿)‘(𝑁 + 𝑀)) = ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘(𝑁 + 𝑀)))
6 eqeq2 2833 . . . . . 6 (0 = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊))) → ((♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = 0 ↔ (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊)))))
7 eqeq2 2833 . . . . . 6 ((𝐿 − (♯‘𝑊)) = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊))) → ((♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = (𝐿 − (♯‘𝑊)) ↔ (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊)))))
81adantr 483 . . . . . . . . 9 ((𝜑𝐿 ≤ (♯‘𝑊)) → 𝐿 ∈ ℕ0)
92adantr 483 . . . . . . . . 9 ((𝜑𝐿 ≤ (♯‘𝑊)) → 𝑊 ∈ Word 𝑆)
103adantr 483 . . . . . . . . 9 ((𝜑𝐿 ≤ (♯‘𝑊)) → 𝐶𝑆)
11 simpr 487 . . . . . . . . 9 ((𝜑𝐿 ≤ (♯‘𝑊)) → 𝐿 ≤ (♯‘𝑊))
128, 9, 10, 11lpadlem3 31949 . . . . . . . 8 ((𝜑𝐿 ≤ (♯‘𝑊)) → ((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) = ∅)
1312fveq2d 6674 . . . . . . 7 ((𝜑𝐿 ≤ (♯‘𝑊)) → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = (♯‘∅))
14 hash0 13729 . . . . . . 7 (♯‘∅) = 0
1513, 14syl6eq 2872 . . . . . 6 ((𝜑𝐿 ≤ (♯‘𝑊)) → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = 0)
161adantr 483 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → 𝐿 ∈ ℕ0)
172adantr 483 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → 𝑊 ∈ Word 𝑆)
183adantr 483 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → 𝐶𝑆)
19 lencl 13883 . . . . . . . . . . 11 (𝑊 ∈ Word 𝑆 → (♯‘𝑊) ∈ ℕ0)
202, 19syl 17 . . . . . . . . . 10 (𝜑 → (♯‘𝑊) ∈ ℕ0)
2120nn0red 11957 . . . . . . . . 9 (𝜑 → (♯‘𝑊) ∈ ℝ)
2221adantr 483 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → (♯‘𝑊) ∈ ℝ)
231nn0red 11957 . . . . . . . . 9 (𝜑𝐿 ∈ ℝ)
2423adantr 483 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → 𝐿 ∈ ℝ)
2521, 23ltnled 10787 . . . . . . . . 9 (𝜑 → ((♯‘𝑊) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑊)))
2625biimpar 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → (♯‘𝑊) < 𝐿)
2722, 24, 26ltled 10788 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → (♯‘𝑊) ≤ 𝐿)
2816, 17, 18, 27lpadlem2 31951 . . . . . 6 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = (𝐿 − (♯‘𝑊)))
296, 7, 15, 28ifbothda 4504 . . . . 5 (𝜑 → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊))))
30 lpadright.1 . . . . 5 (𝜑𝑀 = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊))))
3129, 30eqtr4d 2859 . . . 4 (𝜑 → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = 𝑀)
3231oveq2d 7172 . . 3 (𝜑 → (𝑁 + (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶}))) = (𝑁 + 𝑀))
3332fveq2d 6674 . 2 (𝜑 → ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘(𝑁 + (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})))) = ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘(𝑁 + 𝑀)))
343lpadlem1 31948 . . 3 (𝜑 → ((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ∈ Word 𝑆)
35 lpadright.2 . . 3 (𝜑𝑁 ∈ (0..^(♯‘𝑊)))
36 ccatval3 13933 . . 3 ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ∈ Word 𝑆𝑊 ∈ Word 𝑆𝑁 ∈ (0..^(♯‘𝑊))) → ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘(𝑁 + (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})))) = (𝑊𝑁))
3734, 2, 35, 36syl3anc 1367 . 2 (𝜑 → ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘(𝑁 + (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})))) = (𝑊𝑁))
385, 33, 373eqtr2d 2862 1 (𝜑 → (((𝐶 leftpad 𝑊)‘𝐿)‘(𝑁 + 𝑀)) = (𝑊𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  c0 4291  ifcif 4467  {csn 4567   class class class wbr 5066   × cxp 5553  cfv 6355  (class class class)co 7156  cr 10536  0cc0 10537   + caddc 10540   < clt 10675  cle 10676  cmin 10870  0cn0 11898  ..^cfzo 13034  chash 13691  Word cword 13862   ++ cconcat 13922   leftpad clpad 31945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-hash 13692  df-word 13863  df-concat 13923  df-lpad 31946
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator