Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lpadright Structured version   Visualization version   GIF version

Theorem lpadright 34682
Description: The suffix of a left-padded word the original word 𝑊. (Contributed by Thierry Arnoux, 7-Aug-2023.)
Hypotheses
Ref Expression
lpadlen.1 (𝜑𝐿 ∈ ℕ0)
lpadlen.2 (𝜑𝑊 ∈ Word 𝑆)
lpadlen.3 (𝜑𝐶𝑆)
lpadright.1 (𝜑𝑀 = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊))))
lpadright.2 (𝜑𝑁 ∈ (0..^(♯‘𝑊)))
Assertion
Ref Expression
lpadright (𝜑 → (((𝐶 leftpad 𝑊)‘𝐿)‘(𝑁 + 𝑀)) = (𝑊𝑁))

Proof of Theorem lpadright
StepHypRef Expression
1 lpadlen.1 . . . 4 (𝜑𝐿 ∈ ℕ0)
2 lpadlen.2 . . . 4 (𝜑𝑊 ∈ Word 𝑆)
3 lpadlen.3 . . . 4 (𝜑𝐶𝑆)
41, 2, 3lpadval 34674 . . 3 (𝜑 → ((𝐶 leftpad 𝑊)‘𝐿) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊))
54fveq1d 6863 . 2 (𝜑 → (((𝐶 leftpad 𝑊)‘𝐿)‘(𝑁 + 𝑀)) = ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘(𝑁 + 𝑀)))
6 eqeq2 2742 . . . . . 6 (0 = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊))) → ((♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = 0 ↔ (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊)))))
7 eqeq2 2742 . . . . . 6 ((𝐿 − (♯‘𝑊)) = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊))) → ((♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = (𝐿 − (♯‘𝑊)) ↔ (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊)))))
81adantr 480 . . . . . . . . 9 ((𝜑𝐿 ≤ (♯‘𝑊)) → 𝐿 ∈ ℕ0)
92adantr 480 . . . . . . . . 9 ((𝜑𝐿 ≤ (♯‘𝑊)) → 𝑊 ∈ Word 𝑆)
103adantr 480 . . . . . . . . 9 ((𝜑𝐿 ≤ (♯‘𝑊)) → 𝐶𝑆)
11 simpr 484 . . . . . . . . 9 ((𝜑𝐿 ≤ (♯‘𝑊)) → 𝐿 ≤ (♯‘𝑊))
128, 9, 10, 11lpadlem3 34676 . . . . . . . 8 ((𝜑𝐿 ≤ (♯‘𝑊)) → ((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) = ∅)
1312fveq2d 6865 . . . . . . 7 ((𝜑𝐿 ≤ (♯‘𝑊)) → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = (♯‘∅))
14 hash0 14339 . . . . . . 7 (♯‘∅) = 0
1513, 14eqtrdi 2781 . . . . . 6 ((𝜑𝐿 ≤ (♯‘𝑊)) → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = 0)
161adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → 𝐿 ∈ ℕ0)
172adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → 𝑊 ∈ Word 𝑆)
183adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → 𝐶𝑆)
19 lencl 14505 . . . . . . . . . . 11 (𝑊 ∈ Word 𝑆 → (♯‘𝑊) ∈ ℕ0)
202, 19syl 17 . . . . . . . . . 10 (𝜑 → (♯‘𝑊) ∈ ℕ0)
2120nn0red 12511 . . . . . . . . 9 (𝜑 → (♯‘𝑊) ∈ ℝ)
2221adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → (♯‘𝑊) ∈ ℝ)
231nn0red 12511 . . . . . . . . 9 (𝜑𝐿 ∈ ℝ)
2423adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → 𝐿 ∈ ℝ)
2521, 23ltnled 11328 . . . . . . . . 9 (𝜑 → ((♯‘𝑊) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑊)))
2625biimpar 477 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → (♯‘𝑊) < 𝐿)
2722, 24, 26ltled 11329 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → (♯‘𝑊) ≤ 𝐿)
2816, 17, 18, 27lpadlem2 34678 . . . . . 6 ((𝜑 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = (𝐿 − (♯‘𝑊)))
296, 7, 15, 28ifbothda 4530 . . . . 5 (𝜑 → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊))))
30 lpadright.1 . . . . 5 (𝜑𝑀 = if(𝐿 ≤ (♯‘𝑊), 0, (𝐿 − (♯‘𝑊))))
3129, 30eqtr4d 2768 . . . 4 (𝜑 → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = 𝑀)
3231oveq2d 7406 . . 3 (𝜑 → (𝑁 + (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶}))) = (𝑁 + 𝑀))
3332fveq2d 6865 . 2 (𝜑 → ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘(𝑁 + (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})))) = ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘(𝑁 + 𝑀)))
343lpadlem1 34675 . . 3 (𝜑 → ((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ∈ Word 𝑆)
35 lpadright.2 . . 3 (𝜑𝑁 ∈ (0..^(♯‘𝑊)))
36 ccatval3 14551 . . 3 ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ∈ Word 𝑆𝑊 ∈ Word 𝑆𝑁 ∈ (0..^(♯‘𝑊))) → ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘(𝑁 + (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})))) = (𝑊𝑁))
3734, 2, 35, 36syl3anc 1373 . 2 (𝜑 → ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘(𝑁 + (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})))) = (𝑊𝑁))
385, 33, 373eqtr2d 2771 1 (𝜑 → (((𝐶 leftpad 𝑊)‘𝐿)‘(𝑁 + 𝑀)) = (𝑊𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  c0 4299  ifcif 4491  {csn 4592   class class class wbr 5110   × cxp 5639  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075   + caddc 11078   < clt 11215  cle 11216  cmin 11412  0cn0 12449  ..^cfzo 13622  chash 14302  Word cword 14485   ++ cconcat 14542   leftpad clpad 34672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-concat 14543  df-lpad 34673
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator