Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lpadleft | Structured version Visualization version GIF version |
Description: The contents of prefix of a left-padded word is always the letter 𝐶. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
Ref | Expression |
---|---|
lpadlen.1 | ⊢ (𝜑 → 𝐿 ∈ ℕ0) |
lpadlen.2 | ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) |
lpadlen.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
lpadleft.1 | ⊢ (𝜑 → 𝑁 ∈ (0..^(𝐿 − (♯‘𝑊)))) |
Ref | Expression |
---|---|
lpadleft | ⊢ (𝜑 → (((𝐶 leftpad 𝑊)‘𝐿)‘𝑁) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpadlen.1 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ ℕ0) | |
2 | lpadlen.2 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) | |
3 | lpadlen.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
4 | 1, 2, 3 | lpadval 32656 | . . 3 ⊢ (𝜑 → ((𝐶 leftpad 𝑊)‘𝐿) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)) |
5 | 4 | fveq1d 6776 | . 2 ⊢ (𝜑 → (((𝐶 leftpad 𝑊)‘𝐿)‘𝑁) = ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘𝑁)) |
6 | 3 | lpadlem1 32657 | . . 3 ⊢ (𝜑 → ((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ∈ Word 𝑆) |
7 | lpadleft.1 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (0..^(𝐿 − (♯‘𝑊)))) | |
8 | lencl 14236 | . . . . . . . 8 ⊢ (𝑊 ∈ Word 𝑆 → (♯‘𝑊) ∈ ℕ0) | |
9 | 2, 8 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝑊) ∈ ℕ0) |
10 | elfzo0 13428 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (0..^(𝐿 − (♯‘𝑊))) ↔ (𝑁 ∈ ℕ0 ∧ (𝐿 − (♯‘𝑊)) ∈ ℕ ∧ 𝑁 < (𝐿 − (♯‘𝑊)))) | |
11 | 7, 10 | sylib 217 | . . . . . . . . 9 ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∧ (𝐿 − (♯‘𝑊)) ∈ ℕ ∧ 𝑁 < (𝐿 − (♯‘𝑊)))) |
12 | 11 | simp2d 1142 | . . . . . . . 8 ⊢ (𝜑 → (𝐿 − (♯‘𝑊)) ∈ ℕ) |
13 | 12 | nnnn0d 12293 | . . . . . . 7 ⊢ (𝜑 → (𝐿 − (♯‘𝑊)) ∈ ℕ0) |
14 | nn0sub 12283 | . . . . . . . 8 ⊢ (((♯‘𝑊) ∈ ℕ0 ∧ 𝐿 ∈ ℕ0) → ((♯‘𝑊) ≤ 𝐿 ↔ (𝐿 − (♯‘𝑊)) ∈ ℕ0)) | |
15 | 14 | biimpar 478 | . . . . . . 7 ⊢ ((((♯‘𝑊) ∈ ℕ0 ∧ 𝐿 ∈ ℕ0) ∧ (𝐿 − (♯‘𝑊)) ∈ ℕ0) → (♯‘𝑊) ≤ 𝐿) |
16 | 9, 1, 13, 15 | syl21anc 835 | . . . . . 6 ⊢ (𝜑 → (♯‘𝑊) ≤ 𝐿) |
17 | 1, 2, 3, 16 | lpadlem2 32660 | . . . . 5 ⊢ (𝜑 → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = (𝐿 − (♯‘𝑊))) |
18 | 17 | oveq2d 7291 | . . . 4 ⊢ (𝜑 → (0..^(♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶}))) = (0..^(𝐿 − (♯‘𝑊)))) |
19 | 7, 18 | eleqtrrd 2842 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})))) |
20 | ccatval1 14281 | . . 3 ⊢ ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ∈ Word 𝑆 ∧ 𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0..^(♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})))) → ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘𝑁) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶})‘𝑁)) | |
21 | 6, 2, 19, 20 | syl3anc 1370 | . 2 ⊢ (𝜑 → ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘𝑁) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶})‘𝑁)) |
22 | fvconst2g 7077 | . . 3 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝑁 ∈ (0..^(𝐿 − (♯‘𝑊)))) → (((0..^(𝐿 − (♯‘𝑊))) × {𝐶})‘𝑁) = 𝐶) | |
23 | 3, 7, 22 | syl2anc 584 | . 2 ⊢ (𝜑 → (((0..^(𝐿 − (♯‘𝑊))) × {𝐶})‘𝑁) = 𝐶) |
24 | 5, 21, 23 | 3eqtrd 2782 | 1 ⊢ (𝜑 → (((𝐶 leftpad 𝑊)‘𝐿)‘𝑁) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 {csn 4561 class class class wbr 5074 × cxp 5587 ‘cfv 6433 (class class class)co 7275 0cc0 10871 < clt 11009 ≤ cle 11010 − cmin 11205 ℕcn 11973 ℕ0cn0 12233 ..^cfzo 13382 ♯chash 14044 Word cword 14217 ++ cconcat 14273 leftpad clpad 32654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-concat 14274 df-lpad 32655 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |