Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lpadleft | Structured version Visualization version GIF version |
Description: The contents of prefix of a left-padded word is always the letter 𝐶. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
Ref | Expression |
---|---|
lpadlen.1 | ⊢ (𝜑 → 𝐿 ∈ ℕ0) |
lpadlen.2 | ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) |
lpadlen.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
lpadleft.1 | ⊢ (𝜑 → 𝑁 ∈ (0..^(𝐿 − (♯‘𝑊)))) |
Ref | Expression |
---|---|
lpadleft | ⊢ (𝜑 → (((𝐶 leftpad 𝑊)‘𝐿)‘𝑁) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpadlen.1 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ ℕ0) | |
2 | lpadlen.2 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) | |
3 | lpadlen.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
4 | 1, 2, 3 | lpadval 32556 | . . 3 ⊢ (𝜑 → ((𝐶 leftpad 𝑊)‘𝐿) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)) |
5 | 4 | fveq1d 6758 | . 2 ⊢ (𝜑 → (((𝐶 leftpad 𝑊)‘𝐿)‘𝑁) = ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘𝑁)) |
6 | 3 | lpadlem1 32557 | . . 3 ⊢ (𝜑 → ((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ∈ Word 𝑆) |
7 | lpadleft.1 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (0..^(𝐿 − (♯‘𝑊)))) | |
8 | lencl 14164 | . . . . . . . 8 ⊢ (𝑊 ∈ Word 𝑆 → (♯‘𝑊) ∈ ℕ0) | |
9 | 2, 8 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝑊) ∈ ℕ0) |
10 | elfzo0 13356 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (0..^(𝐿 − (♯‘𝑊))) ↔ (𝑁 ∈ ℕ0 ∧ (𝐿 − (♯‘𝑊)) ∈ ℕ ∧ 𝑁 < (𝐿 − (♯‘𝑊)))) | |
11 | 7, 10 | sylib 217 | . . . . . . . . 9 ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∧ (𝐿 − (♯‘𝑊)) ∈ ℕ ∧ 𝑁 < (𝐿 − (♯‘𝑊)))) |
12 | 11 | simp2d 1141 | . . . . . . . 8 ⊢ (𝜑 → (𝐿 − (♯‘𝑊)) ∈ ℕ) |
13 | 12 | nnnn0d 12223 | . . . . . . 7 ⊢ (𝜑 → (𝐿 − (♯‘𝑊)) ∈ ℕ0) |
14 | nn0sub 12213 | . . . . . . . 8 ⊢ (((♯‘𝑊) ∈ ℕ0 ∧ 𝐿 ∈ ℕ0) → ((♯‘𝑊) ≤ 𝐿 ↔ (𝐿 − (♯‘𝑊)) ∈ ℕ0)) | |
15 | 14 | biimpar 477 | . . . . . . 7 ⊢ ((((♯‘𝑊) ∈ ℕ0 ∧ 𝐿 ∈ ℕ0) ∧ (𝐿 − (♯‘𝑊)) ∈ ℕ0) → (♯‘𝑊) ≤ 𝐿) |
16 | 9, 1, 13, 15 | syl21anc 834 | . . . . . 6 ⊢ (𝜑 → (♯‘𝑊) ≤ 𝐿) |
17 | 1, 2, 3, 16 | lpadlem2 32560 | . . . . 5 ⊢ (𝜑 → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = (𝐿 − (♯‘𝑊))) |
18 | 17 | oveq2d 7271 | . . . 4 ⊢ (𝜑 → (0..^(♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶}))) = (0..^(𝐿 − (♯‘𝑊)))) |
19 | 7, 18 | eleqtrrd 2842 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})))) |
20 | ccatval1 14209 | . . 3 ⊢ ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ∈ Word 𝑆 ∧ 𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0..^(♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})))) → ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘𝑁) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶})‘𝑁)) | |
21 | 6, 2, 19, 20 | syl3anc 1369 | . 2 ⊢ (𝜑 → ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘𝑁) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶})‘𝑁)) |
22 | fvconst2g 7059 | . . 3 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝑁 ∈ (0..^(𝐿 − (♯‘𝑊)))) → (((0..^(𝐿 − (♯‘𝑊))) × {𝐶})‘𝑁) = 𝐶) | |
23 | 3, 7, 22 | syl2anc 583 | . 2 ⊢ (𝜑 → (((0..^(𝐿 − (♯‘𝑊))) × {𝐶})‘𝑁) = 𝐶) |
24 | 5, 21, 23 | 3eqtrd 2782 | 1 ⊢ (𝜑 → (((𝐶 leftpad 𝑊)‘𝐿)‘𝑁) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 {csn 4558 class class class wbr 5070 × cxp 5578 ‘cfv 6418 (class class class)co 7255 0cc0 10802 < clt 10940 ≤ cle 10941 − cmin 11135 ℕcn 11903 ℕ0cn0 12163 ..^cfzo 13311 ♯chash 13972 Word cword 14145 ++ cconcat 14201 leftpad clpad 32554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-concat 14202 df-lpad 32555 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |