Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lpadleft | Structured version Visualization version GIF version |
Description: The contents of prefix of a left-padded word is always the letter 𝐶. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
Ref | Expression |
---|---|
lpadlen.1 | ⊢ (𝜑 → 𝐿 ∈ ℕ0) |
lpadlen.2 | ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) |
lpadlen.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
lpadleft.1 | ⊢ (𝜑 → 𝑁 ∈ (0..^(𝐿 − (♯‘𝑊)))) |
Ref | Expression |
---|---|
lpadleft | ⊢ (𝜑 → (((𝐶 leftpad 𝑊)‘𝐿)‘𝑁) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpadlen.1 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ ℕ0) | |
2 | lpadlen.2 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) | |
3 | lpadlen.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
4 | 1, 2, 3 | lpadval 32179 | . . 3 ⊢ (𝜑 → ((𝐶 leftpad 𝑊)‘𝐿) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)) |
5 | 4 | fveq1d 6664 | . 2 ⊢ (𝜑 → (((𝐶 leftpad 𝑊)‘𝐿)‘𝑁) = ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘𝑁)) |
6 | 3 | lpadlem1 32180 | . . 3 ⊢ (𝜑 → ((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ∈ Word 𝑆) |
7 | lpadleft.1 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (0..^(𝐿 − (♯‘𝑊)))) | |
8 | lencl 13937 | . . . . . . . 8 ⊢ (𝑊 ∈ Word 𝑆 → (♯‘𝑊) ∈ ℕ0) | |
9 | 2, 8 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝑊) ∈ ℕ0) |
10 | elfzo0 13132 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (0..^(𝐿 − (♯‘𝑊))) ↔ (𝑁 ∈ ℕ0 ∧ (𝐿 − (♯‘𝑊)) ∈ ℕ ∧ 𝑁 < (𝐿 − (♯‘𝑊)))) | |
11 | 7, 10 | sylib 221 | . . . . . . . . 9 ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∧ (𝐿 − (♯‘𝑊)) ∈ ℕ ∧ 𝑁 < (𝐿 − (♯‘𝑊)))) |
12 | 11 | simp2d 1140 | . . . . . . . 8 ⊢ (𝜑 → (𝐿 − (♯‘𝑊)) ∈ ℕ) |
13 | 12 | nnnn0d 11999 | . . . . . . 7 ⊢ (𝜑 → (𝐿 − (♯‘𝑊)) ∈ ℕ0) |
14 | nn0sub 11989 | . . . . . . . 8 ⊢ (((♯‘𝑊) ∈ ℕ0 ∧ 𝐿 ∈ ℕ0) → ((♯‘𝑊) ≤ 𝐿 ↔ (𝐿 − (♯‘𝑊)) ∈ ℕ0)) | |
15 | 14 | biimpar 481 | . . . . . . 7 ⊢ ((((♯‘𝑊) ∈ ℕ0 ∧ 𝐿 ∈ ℕ0) ∧ (𝐿 − (♯‘𝑊)) ∈ ℕ0) → (♯‘𝑊) ≤ 𝐿) |
16 | 9, 1, 13, 15 | syl21anc 836 | . . . . . 6 ⊢ (𝜑 → (♯‘𝑊) ≤ 𝐿) |
17 | 1, 2, 3, 16 | lpadlem2 32183 | . . . . 5 ⊢ (𝜑 → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = (𝐿 − (♯‘𝑊))) |
18 | 17 | oveq2d 7171 | . . . 4 ⊢ (𝜑 → (0..^(♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶}))) = (0..^(𝐿 − (♯‘𝑊)))) |
19 | 7, 18 | eleqtrrd 2855 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})))) |
20 | ccatval1 13982 | . . 3 ⊢ ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ∈ Word 𝑆 ∧ 𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0..^(♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})))) → ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘𝑁) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶})‘𝑁)) | |
21 | 6, 2, 19, 20 | syl3anc 1368 | . 2 ⊢ (𝜑 → ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘𝑁) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶})‘𝑁)) |
22 | fvconst2g 6960 | . . 3 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝑁 ∈ (0..^(𝐿 − (♯‘𝑊)))) → (((0..^(𝐿 − (♯‘𝑊))) × {𝐶})‘𝑁) = 𝐶) | |
23 | 3, 7, 22 | syl2anc 587 | . 2 ⊢ (𝜑 → (((0..^(𝐿 − (♯‘𝑊))) × {𝐶})‘𝑁) = 𝐶) |
24 | 5, 21, 23 | 3eqtrd 2797 | 1 ⊢ (𝜑 → (((𝐶 leftpad 𝑊)‘𝐿)‘𝑁) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 {csn 4525 class class class wbr 5035 × cxp 5525 ‘cfv 6339 (class class class)co 7155 0cc0 10580 < clt 10718 ≤ cle 10719 − cmin 10913 ℕcn 11679 ℕ0cn0 11939 ..^cfzo 13087 ♯chash 13745 Word cword 13918 ++ cconcat 13974 leftpad clpad 32177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-1o 8117 df-oadd 8121 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-dju 9368 df-card 9406 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-nn 11680 df-n0 11940 df-z 12026 df-uz 12288 df-fz 12945 df-fzo 13088 df-hash 13746 df-word 13919 df-concat 13975 df-lpad 32178 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |