| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lpadleft | Structured version Visualization version GIF version | ||
| Description: The contents of prefix of a left-padded word is always the letter 𝐶. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
| Ref | Expression |
|---|---|
| lpadlen.1 | ⊢ (𝜑 → 𝐿 ∈ ℕ0) |
| lpadlen.2 | ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) |
| lpadlen.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
| lpadleft.1 | ⊢ (𝜑 → 𝑁 ∈ (0..^(𝐿 − (♯‘𝑊)))) |
| Ref | Expression |
|---|---|
| lpadleft | ⊢ (𝜑 → (((𝐶 leftpad 𝑊)‘𝐿)‘𝑁) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpadlen.1 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ ℕ0) | |
| 2 | lpadlen.2 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) | |
| 3 | lpadlen.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
| 4 | 1, 2, 3 | lpadval 34643 | . . 3 ⊢ (𝜑 → ((𝐶 leftpad 𝑊)‘𝐿) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)) |
| 5 | 4 | fveq1d 6828 | . 2 ⊢ (𝜑 → (((𝐶 leftpad 𝑊)‘𝐿)‘𝑁) = ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘𝑁)) |
| 6 | 3 | lpadlem1 34644 | . . 3 ⊢ (𝜑 → ((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ∈ Word 𝑆) |
| 7 | lpadleft.1 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (0..^(𝐿 − (♯‘𝑊)))) | |
| 8 | lencl 14458 | . . . . . . . 8 ⊢ (𝑊 ∈ Word 𝑆 → (♯‘𝑊) ∈ ℕ0) | |
| 9 | 2, 8 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝑊) ∈ ℕ0) |
| 10 | elfzo0 13621 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (0..^(𝐿 − (♯‘𝑊))) ↔ (𝑁 ∈ ℕ0 ∧ (𝐿 − (♯‘𝑊)) ∈ ℕ ∧ 𝑁 < (𝐿 − (♯‘𝑊)))) | |
| 11 | 7, 10 | sylib 218 | . . . . . . . . 9 ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∧ (𝐿 − (♯‘𝑊)) ∈ ℕ ∧ 𝑁 < (𝐿 − (♯‘𝑊)))) |
| 12 | 11 | simp2d 1143 | . . . . . . . 8 ⊢ (𝜑 → (𝐿 − (♯‘𝑊)) ∈ ℕ) |
| 13 | 12 | nnnn0d 12463 | . . . . . . 7 ⊢ (𝜑 → (𝐿 − (♯‘𝑊)) ∈ ℕ0) |
| 14 | nn0sub 12452 | . . . . . . . 8 ⊢ (((♯‘𝑊) ∈ ℕ0 ∧ 𝐿 ∈ ℕ0) → ((♯‘𝑊) ≤ 𝐿 ↔ (𝐿 − (♯‘𝑊)) ∈ ℕ0)) | |
| 15 | 14 | biimpar 477 | . . . . . . 7 ⊢ ((((♯‘𝑊) ∈ ℕ0 ∧ 𝐿 ∈ ℕ0) ∧ (𝐿 − (♯‘𝑊)) ∈ ℕ0) → (♯‘𝑊) ≤ 𝐿) |
| 16 | 9, 1, 13, 15 | syl21anc 837 | . . . . . 6 ⊢ (𝜑 → (♯‘𝑊) ≤ 𝐿) |
| 17 | 1, 2, 3, 16 | lpadlem2 34647 | . . . . 5 ⊢ (𝜑 → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = (𝐿 − (♯‘𝑊))) |
| 18 | 17 | oveq2d 7369 | . . . 4 ⊢ (𝜑 → (0..^(♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶}))) = (0..^(𝐿 − (♯‘𝑊)))) |
| 19 | 7, 18 | eleqtrrd 2831 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})))) |
| 20 | ccatval1 14502 | . . 3 ⊢ ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ∈ Word 𝑆 ∧ 𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0..^(♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})))) → ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘𝑁) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶})‘𝑁)) | |
| 21 | 6, 2, 19, 20 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘𝑁) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶})‘𝑁)) |
| 22 | fvconst2g 7142 | . . 3 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝑁 ∈ (0..^(𝐿 − (♯‘𝑊)))) → (((0..^(𝐿 − (♯‘𝑊))) × {𝐶})‘𝑁) = 𝐶) | |
| 23 | 3, 7, 22 | syl2anc 584 | . 2 ⊢ (𝜑 → (((0..^(𝐿 − (♯‘𝑊))) × {𝐶})‘𝑁) = 𝐶) |
| 24 | 5, 21, 23 | 3eqtrd 2768 | 1 ⊢ (𝜑 → (((𝐶 leftpad 𝑊)‘𝐿)‘𝑁) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {csn 4579 class class class wbr 5095 × cxp 5621 ‘cfv 6486 (class class class)co 7353 0cc0 11028 < clt 11168 ≤ cle 11169 − cmin 11365 ℕcn 12146 ℕ0cn0 12402 ..^cfzo 13575 ♯chash 14255 Word cword 14438 ++ cconcat 14495 leftpad clpad 34641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-oadd 8399 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-hash 14256 df-word 14439 df-concat 14496 df-lpad 34642 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |