| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lpadleft | Structured version Visualization version GIF version | ||
| Description: The contents of prefix of a left-padded word is always the letter 𝐶. (Contributed by Thierry Arnoux, 7-Aug-2023.) |
| Ref | Expression |
|---|---|
| lpadlen.1 | ⊢ (𝜑 → 𝐿 ∈ ℕ0) |
| lpadlen.2 | ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) |
| lpadlen.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
| lpadleft.1 | ⊢ (𝜑 → 𝑁 ∈ (0..^(𝐿 − (♯‘𝑊)))) |
| Ref | Expression |
|---|---|
| lpadleft | ⊢ (𝜑 → (((𝐶 leftpad 𝑊)‘𝐿)‘𝑁) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpadlen.1 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ ℕ0) | |
| 2 | lpadlen.2 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) | |
| 3 | lpadlen.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
| 4 | 1, 2, 3 | lpadval 34710 | . . 3 ⊢ (𝜑 → ((𝐶 leftpad 𝑊)‘𝐿) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)) |
| 5 | 4 | fveq1d 6830 | . 2 ⊢ (𝜑 → (((𝐶 leftpad 𝑊)‘𝐿)‘𝑁) = ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘𝑁)) |
| 6 | 3 | lpadlem1 34711 | . . 3 ⊢ (𝜑 → ((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ∈ Word 𝑆) |
| 7 | lpadleft.1 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (0..^(𝐿 − (♯‘𝑊)))) | |
| 8 | lencl 14442 | . . . . . . . 8 ⊢ (𝑊 ∈ Word 𝑆 → (♯‘𝑊) ∈ ℕ0) | |
| 9 | 2, 8 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝑊) ∈ ℕ0) |
| 10 | elfzo0 13602 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (0..^(𝐿 − (♯‘𝑊))) ↔ (𝑁 ∈ ℕ0 ∧ (𝐿 − (♯‘𝑊)) ∈ ℕ ∧ 𝑁 < (𝐿 − (♯‘𝑊)))) | |
| 11 | 7, 10 | sylib 218 | . . . . . . . . 9 ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∧ (𝐿 − (♯‘𝑊)) ∈ ℕ ∧ 𝑁 < (𝐿 − (♯‘𝑊)))) |
| 12 | 11 | simp2d 1143 | . . . . . . . 8 ⊢ (𝜑 → (𝐿 − (♯‘𝑊)) ∈ ℕ) |
| 13 | 12 | nnnn0d 12449 | . . . . . . 7 ⊢ (𝜑 → (𝐿 − (♯‘𝑊)) ∈ ℕ0) |
| 14 | nn0sub 12438 | . . . . . . . 8 ⊢ (((♯‘𝑊) ∈ ℕ0 ∧ 𝐿 ∈ ℕ0) → ((♯‘𝑊) ≤ 𝐿 ↔ (𝐿 − (♯‘𝑊)) ∈ ℕ0)) | |
| 15 | 14 | biimpar 477 | . . . . . . 7 ⊢ ((((♯‘𝑊) ∈ ℕ0 ∧ 𝐿 ∈ ℕ0) ∧ (𝐿 − (♯‘𝑊)) ∈ ℕ0) → (♯‘𝑊) ≤ 𝐿) |
| 16 | 9, 1, 13, 15 | syl21anc 837 | . . . . . 6 ⊢ (𝜑 → (♯‘𝑊) ≤ 𝐿) |
| 17 | 1, 2, 3, 16 | lpadlem2 34714 | . . . . 5 ⊢ (𝜑 → (♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})) = (𝐿 − (♯‘𝑊))) |
| 18 | 17 | oveq2d 7368 | . . . 4 ⊢ (𝜑 → (0..^(♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶}))) = (0..^(𝐿 − (♯‘𝑊)))) |
| 19 | 7, 18 | eleqtrrd 2836 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})))) |
| 20 | ccatval1 14486 | . . 3 ⊢ ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ∈ Word 𝑆 ∧ 𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0..^(♯‘((0..^(𝐿 − (♯‘𝑊))) × {𝐶})))) → ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘𝑁) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶})‘𝑁)) | |
| 21 | 6, 2, 19, 20 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((((0..^(𝐿 − (♯‘𝑊))) × {𝐶}) ++ 𝑊)‘𝑁) = (((0..^(𝐿 − (♯‘𝑊))) × {𝐶})‘𝑁)) |
| 22 | fvconst2g 7142 | . . 3 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝑁 ∈ (0..^(𝐿 − (♯‘𝑊)))) → (((0..^(𝐿 − (♯‘𝑊))) × {𝐶})‘𝑁) = 𝐶) | |
| 23 | 3, 7, 22 | syl2anc 584 | . 2 ⊢ (𝜑 → (((0..^(𝐿 − (♯‘𝑊))) × {𝐶})‘𝑁) = 𝐶) |
| 24 | 5, 21, 23 | 3eqtrd 2772 | 1 ⊢ (𝜑 → (((𝐶 leftpad 𝑊)‘𝐿)‘𝑁) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 {csn 4575 class class class wbr 5093 × cxp 5617 ‘cfv 6486 (class class class)co 7352 0cc0 11013 < clt 11153 ≤ cle 11154 − cmin 11351 ℕcn 12132 ℕ0cn0 12388 ..^cfzo 13556 ♯chash 14239 Word cword 14422 ++ cconcat 14479 leftpad clpad 34708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-oadd 8395 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-dju 9801 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-hash 14240 df-word 14423 df-concat 14480 df-lpad 34709 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |