MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltmul12ad Structured version   Visualization version   GIF version

Theorem ltmul12ad 11916
Description: Comparison of product of two positive numbers. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
ltp1d.1 (𝜑𝐴 ∈ ℝ)
divgt0d.2 (𝜑𝐵 ∈ ℝ)
lemul1ad.3 (𝜑𝐶 ∈ ℝ)
ltmul12ad.3 (𝜑𝐷 ∈ ℝ)
ltmul12ad.4 (𝜑 → 0 ≤ 𝐴)
ltmul12ad.5 (𝜑𝐴 < 𝐵)
ltmul12ad.6 (𝜑 → 0 ≤ 𝐶)
ltmul12ad.7 (𝜑𝐶 < 𝐷)
Assertion
Ref Expression
ltmul12ad (𝜑 → (𝐴 · 𝐶) < (𝐵 · 𝐷))

Proof of Theorem ltmul12ad
StepHypRef Expression
1 ltp1d.1 . . 3 (𝜑𝐴 ∈ ℝ)
2 divgt0d.2 . . 3 (𝜑𝐵 ∈ ℝ)
31, 2jca 512 . 2 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
4 ltmul12ad.4 . . 3 (𝜑 → 0 ≤ 𝐴)
5 ltmul12ad.5 . . 3 (𝜑𝐴 < 𝐵)
64, 5jca 512 . 2 (𝜑 → (0 ≤ 𝐴𝐴 < 𝐵))
7 lemul1ad.3 . . 3 (𝜑𝐶 ∈ ℝ)
8 ltmul12ad.3 . . 3 (𝜑𝐷 ∈ ℝ)
97, 8jca 512 . 2 (𝜑 → (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ))
10 ltmul12ad.6 . . 3 (𝜑 → 0 ≤ 𝐶)
11 ltmul12ad.7 . . 3 (𝜑𝐶 < 𝐷)
1210, 11jca 512 . 2 (𝜑 → (0 ≤ 𝐶𝐶 < 𝐷))
13 ltmul12a 11831 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → (𝐴 · 𝐶) < (𝐵 · 𝐷))
143, 6, 9, 12, 13syl22anc 836 1 (𝜑 → (𝐴 · 𝐶) < (𝐵 · 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106   class class class wbr 5074  (class class class)co 7275  cr 10870  0cc0 10871   · cmul 10876   < clt 11009  cle 11010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208
This theorem is referenced by:  pntibndlem2  26739  hgt750leme  32638  knoppndvlem18  34709  2ap1caineq  40101  stoweidlem3  43544  smfmullem1  44325
  Copyright terms: Public domain W3C validator