MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltmul12ad Structured version   Visualization version   GIF version

Theorem ltmul12ad 11575
Description: Comparison of product of two positive numbers. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
ltp1d.1 (𝜑𝐴 ∈ ℝ)
divgt0d.2 (𝜑𝐵 ∈ ℝ)
lemul1ad.3 (𝜑𝐶 ∈ ℝ)
ltmul12ad.3 (𝜑𝐷 ∈ ℝ)
ltmul12ad.4 (𝜑 → 0 ≤ 𝐴)
ltmul12ad.5 (𝜑𝐴 < 𝐵)
ltmul12ad.6 (𝜑 → 0 ≤ 𝐶)
ltmul12ad.7 (𝜑𝐶 < 𝐷)
Assertion
Ref Expression
ltmul12ad (𝜑 → (𝐴 · 𝐶) < (𝐵 · 𝐷))

Proof of Theorem ltmul12ad
StepHypRef Expression
1 ltp1d.1 . . 3 (𝜑𝐴 ∈ ℝ)
2 divgt0d.2 . . 3 (𝜑𝐵 ∈ ℝ)
31, 2jca 514 . 2 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
4 ltmul12ad.4 . . 3 (𝜑 → 0 ≤ 𝐴)
5 ltmul12ad.5 . . 3 (𝜑𝐴 < 𝐵)
64, 5jca 514 . 2 (𝜑 → (0 ≤ 𝐴𝐴 < 𝐵))
7 lemul1ad.3 . . 3 (𝜑𝐶 ∈ ℝ)
8 ltmul12ad.3 . . 3 (𝜑𝐷 ∈ ℝ)
97, 8jca 514 . 2 (𝜑 → (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ))
10 ltmul12ad.6 . . 3 (𝜑 → 0 ≤ 𝐶)
11 ltmul12ad.7 . . 3 (𝜑𝐶 < 𝐷)
1210, 11jca 514 . 2 (𝜑 → (0 ≤ 𝐶𝐶 < 𝐷))
13 ltmul12a 11490 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → (𝐴 · 𝐶) < (𝐵 · 𝐷))
143, 6, 9, 12, 13syl22anc 836 1 (𝜑 → (𝐴 · 𝐶) < (𝐵 · 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2110   class class class wbr 5059  (class class class)co 7150  cr 10530  0cc0 10531   · cmul 10536   < clt 10669  cle 10670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-po 5469  df-so 5470  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867
This theorem is referenced by:  pntibndlem2  26161  hgt750leme  31924  knoppndvlem18  33863  stoweidlem3  42281  smfmullem1  43059
  Copyright terms: Public domain W3C validator