MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltmul12ad Structured version   Visualization version   GIF version

Theorem ltmul12ad 11558
Description: Comparison of product of two positive numbers. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
ltp1d.1 (𝜑𝐴 ∈ ℝ)
divgt0d.2 (𝜑𝐵 ∈ ℝ)
lemul1ad.3 (𝜑𝐶 ∈ ℝ)
ltmul12ad.3 (𝜑𝐷 ∈ ℝ)
ltmul12ad.4 (𝜑 → 0 ≤ 𝐴)
ltmul12ad.5 (𝜑𝐴 < 𝐵)
ltmul12ad.6 (𝜑 → 0 ≤ 𝐶)
ltmul12ad.7 (𝜑𝐶 < 𝐷)
Assertion
Ref Expression
ltmul12ad (𝜑 → (𝐴 · 𝐶) < (𝐵 · 𝐷))

Proof of Theorem ltmul12ad
StepHypRef Expression
1 ltp1d.1 . . 3 (𝜑𝐴 ∈ ℝ)
2 divgt0d.2 . . 3 (𝜑𝐵 ∈ ℝ)
31, 2jca 515 . 2 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
4 ltmul12ad.4 . . 3 (𝜑 → 0 ≤ 𝐴)
5 ltmul12ad.5 . . 3 (𝜑𝐴 < 𝐵)
64, 5jca 515 . 2 (𝜑 → (0 ≤ 𝐴𝐴 < 𝐵))
7 lemul1ad.3 . . 3 (𝜑𝐶 ∈ ℝ)
8 ltmul12ad.3 . . 3 (𝜑𝐷 ∈ ℝ)
97, 8jca 515 . 2 (𝜑 → (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ))
10 ltmul12ad.6 . . 3 (𝜑 → 0 ≤ 𝐶)
11 ltmul12ad.7 . . 3 (𝜑𝐶 < 𝐷)
1210, 11jca 515 . 2 (𝜑 → (0 ≤ 𝐶𝐶 < 𝐷))
13 ltmul12a 11473 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → (𝐴 · 𝐶) < (𝐵 · 𝐷))
143, 6, 9, 12, 13syl22anc 837 1 (𝜑 → (𝐴 · 𝐶) < (𝐵 · 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2115   class class class wbr 5039  (class class class)co 7130  cr 10513  0cc0 10514   · cmul 10519   < clt 10652  cle 10653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-br 5040  df-opab 5102  df-mpt 5120  df-id 5433  df-po 5447  df-so 5448  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850
This theorem is referenced by:  pntibndlem2  26153  hgt750leme  31936  knoppndvlem18  33875  stoweidlem3  42436  smfmullem1  43214
  Copyright terms: Public domain W3C validator