Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfmullem1 Structured version   Visualization version   GIF version

Theorem smfmullem1 46796
Description: The multiplication of two sigma-measurable functions is measurable: this is the step (i) of the proof of Proposition 121E (d) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfmullem1.a (𝜑𝐴 ∈ ℝ)
smfmullem1.u (𝜑𝑈 ∈ ℝ)
smfmullem1.v (𝜑𝑉 ∈ ℝ)
smfmullem1.l (𝜑 → (𝑈 · 𝑉) < 𝐴)
smfmullem1.x 𝑋 = ((𝐴 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑈) + (abs‘𝑉))))
smfmullem1.y 𝑌 = if(1 ≤ 𝑋, 1, 𝑋)
smfmullem1.p (𝜑𝑃 ∈ ((𝑈𝑌)(,)𝑈))
smfmullem1.r (𝜑𝑅 ∈ (𝑈(,)(𝑈 + 𝑌)))
smfmullem1.s (𝜑𝑆 ∈ ((𝑉𝑌)(,)𝑉))
smfmullem1.z (𝜑𝑍 ∈ (𝑉(,)(𝑉 + 𝑌)))
smfmullem1.h (𝜑𝐻 ∈ (𝑃(,)𝑅))
smfmullem1.i (𝜑𝐼 ∈ (𝑆(,)𝑍))
Assertion
Ref Expression
smfmullem1 (𝜑 → (𝐻 · 𝐼) < 𝐴)

Proof of Theorem smfmullem1
StepHypRef Expression
1 smfmullem1.h . . . . . . . 8 (𝜑𝐻 ∈ (𝑃(,)𝑅))
21elioored 45554 . . . . . . 7 (𝜑𝐻 ∈ ℝ)
32recnd 11209 . . . . . 6 (𝜑𝐻 ∈ ℂ)
4 smfmullem1.u . . . . . . 7 (𝜑𝑈 ∈ ℝ)
54recnd 11209 . . . . . 6 (𝜑𝑈 ∈ ℂ)
6 smfmullem1.i . . . . . . . 8 (𝜑𝐼 ∈ (𝑆(,)𝑍))
76elioored 45554 . . . . . . 7 (𝜑𝐼 ∈ ℝ)
87recnd 11209 . . . . . 6 (𝜑𝐼 ∈ ℂ)
9 smfmullem1.v . . . . . . 7 (𝜑𝑉 ∈ ℝ)
109recnd 11209 . . . . . 6 (𝜑𝑉 ∈ ℂ)
113, 5, 8, 10mulsubd 11644 . . . . 5 (𝜑 → ((𝐻𝑈) · (𝐼𝑉)) = (((𝐻 · 𝐼) + (𝑉 · 𝑈)) − ((𝐻 · 𝑉) + (𝐼 · 𝑈))))
123, 5, 10subdird 11642 . . . . . . 7 (𝜑 → ((𝐻𝑈) · 𝑉) = ((𝐻 · 𝑉) − (𝑈 · 𝑉)))
135, 8, 10subdid 11641 . . . . . . 7 (𝜑 → (𝑈 · (𝐼𝑉)) = ((𝑈 · 𝐼) − (𝑈 · 𝑉)))
1412, 13oveq12d 7408 . . . . . 6 (𝜑 → (((𝐻𝑈) · 𝑉) + (𝑈 · (𝐼𝑉))) = (((𝐻 · 𝑉) − (𝑈 · 𝑉)) + ((𝑈 · 𝐼) − (𝑈 · 𝑉))))
153, 10mulcld 11201 . . . . . . . 8 (𝜑 → (𝐻 · 𝑉) ∈ ℂ)
165, 8mulcld 11201 . . . . . . . 8 (𝜑 → (𝑈 · 𝐼) ∈ ℂ)
175, 10mulcld 11201 . . . . . . . 8 (𝜑 → (𝑈 · 𝑉) ∈ ℂ)
1815, 16, 17, 17addsub4d 11587 . . . . . . 7 (𝜑 → (((𝐻 · 𝑉) + (𝑈 · 𝐼)) − ((𝑈 · 𝑉) + (𝑈 · 𝑉))) = (((𝐻 · 𝑉) − (𝑈 · 𝑉)) + ((𝑈 · 𝐼) − (𝑈 · 𝑉))))
1918eqcomd 2736 . . . . . 6 (𝜑 → (((𝐻 · 𝑉) − (𝑈 · 𝑉)) + ((𝑈 · 𝐼) − (𝑈 · 𝑉))) = (((𝐻 · 𝑉) + (𝑈 · 𝐼)) − ((𝑈 · 𝑉) + (𝑈 · 𝑉))))
205, 8mulcomd 11202 . . . . . . . 8 (𝜑 → (𝑈 · 𝐼) = (𝐼 · 𝑈))
2120oveq2d 7406 . . . . . . 7 (𝜑 → ((𝐻 · 𝑉) + (𝑈 · 𝐼)) = ((𝐻 · 𝑉) + (𝐼 · 𝑈)))
2221oveq1d 7405 . . . . . 6 (𝜑 → (((𝐻 · 𝑉) + (𝑈 · 𝐼)) − ((𝑈 · 𝑉) + (𝑈 · 𝑉))) = (((𝐻 · 𝑉) + (𝐼 · 𝑈)) − ((𝑈 · 𝑉) + (𝑈 · 𝑉))))
2314, 19, 223eqtrd 2769 . . . . 5 (𝜑 → (((𝐻𝑈) · 𝑉) + (𝑈 · (𝐼𝑉))) = (((𝐻 · 𝑉) + (𝐼 · 𝑈)) − ((𝑈 · 𝑉) + (𝑈 · 𝑉))))
2411, 23oveq12d 7408 . . . 4 (𝜑 → (((𝐻𝑈) · (𝐼𝑉)) + (((𝐻𝑈) · 𝑉) + (𝑈 · (𝐼𝑉)))) = ((((𝐻 · 𝐼) + (𝑉 · 𝑈)) − ((𝐻 · 𝑉) + (𝐼 · 𝑈))) + (((𝐻 · 𝑉) + (𝐼 · 𝑈)) − ((𝑈 · 𝑉) + (𝑈 · 𝑉)))))
253, 8mulcld 11201 . . . . . . . . . 10 (𝜑 → (𝐻 · 𝐼) ∈ ℂ)
2610, 5mulcld 11201 . . . . . . . . . 10 (𝜑 → (𝑉 · 𝑈) ∈ ℂ)
2725, 26addcld 11200 . . . . . . . . 9 (𝜑 → ((𝐻 · 𝐼) + (𝑉 · 𝑈)) ∈ ℂ)
288, 5mulcld 11201 . . . . . . . . . 10 (𝜑 → (𝐼 · 𝑈) ∈ ℂ)
2915, 28addcld 11200 . . . . . . . . 9 (𝜑 → ((𝐻 · 𝑉) + (𝐼 · 𝑈)) ∈ ℂ)
3027, 29npcand 11544 . . . . . . . 8 (𝜑 → ((((𝐻 · 𝐼) + (𝑉 · 𝑈)) − ((𝐻 · 𝑉) + (𝐼 · 𝑈))) + ((𝐻 · 𝑉) + (𝐼 · 𝑈))) = ((𝐻 · 𝐼) + (𝑉 · 𝑈)))
3110, 5mulcomd 11202 . . . . . . . . 9 (𝜑 → (𝑉 · 𝑈) = (𝑈 · 𝑉))
3231oveq2d 7406 . . . . . . . 8 (𝜑 → ((𝐻 · 𝐼) + (𝑉 · 𝑈)) = ((𝐻 · 𝐼) + (𝑈 · 𝑉)))
3330, 32eqtrd 2765 . . . . . . 7 (𝜑 → ((((𝐻 · 𝐼) + (𝑉 · 𝑈)) − ((𝐻 · 𝑉) + (𝐼 · 𝑈))) + ((𝐻 · 𝑉) + (𝐼 · 𝑈))) = ((𝐻 · 𝐼) + (𝑈 · 𝑉)))
3433eqcomd 2736 . . . . . 6 (𝜑 → ((𝐻 · 𝐼) + (𝑈 · 𝑉)) = ((((𝐻 · 𝐼) + (𝑉 · 𝑈)) − ((𝐻 · 𝑉) + (𝐼 · 𝑈))) + ((𝐻 · 𝑉) + (𝐼 · 𝑈))))
3534oveq1d 7405 . . . . 5 (𝜑 → (((𝐻 · 𝐼) + (𝑈 · 𝑉)) − ((𝑈 · 𝑉) + (𝑈 · 𝑉))) = (((((𝐻 · 𝐼) + (𝑉 · 𝑈)) − ((𝐻 · 𝑉) + (𝐼 · 𝑈))) + ((𝐻 · 𝑉) + (𝐼 · 𝑈))) − ((𝑈 · 𝑉) + (𝑈 · 𝑉))))
3627, 29subcld 11540 . . . . . 6 (𝜑 → (((𝐻 · 𝐼) + (𝑉 · 𝑈)) − ((𝐻 · 𝑉) + (𝐼 · 𝑈))) ∈ ℂ)
3717, 17addcld 11200 . . . . . 6 (𝜑 → ((𝑈 · 𝑉) + (𝑈 · 𝑉)) ∈ ℂ)
3836, 29, 37addsubassd 11560 . . . . 5 (𝜑 → (((((𝐻 · 𝐼) + (𝑉 · 𝑈)) − ((𝐻 · 𝑉) + (𝐼 · 𝑈))) + ((𝐻 · 𝑉) + (𝐼 · 𝑈))) − ((𝑈 · 𝑉) + (𝑈 · 𝑉))) = ((((𝐻 · 𝐼) + (𝑉 · 𝑈)) − ((𝐻 · 𝑉) + (𝐼 · 𝑈))) + (((𝐻 · 𝑉) + (𝐼 · 𝑈)) − ((𝑈 · 𝑉) + (𝑈 · 𝑉)))))
3935, 38eqtr2d 2766 . . . 4 (𝜑 → ((((𝐻 · 𝐼) + (𝑉 · 𝑈)) − ((𝐻 · 𝑉) + (𝐼 · 𝑈))) + (((𝐻 · 𝑉) + (𝐼 · 𝑈)) − ((𝑈 · 𝑉) + (𝑈 · 𝑉)))) = (((𝐻 · 𝐼) + (𝑈 · 𝑉)) − ((𝑈 · 𝑉) + (𝑈 · 𝑉))))
4025, 17, 17pnpcan2d 11578 . . . 4 (𝜑 → (((𝐻 · 𝐼) + (𝑈 · 𝑉)) − ((𝑈 · 𝑉) + (𝑈 · 𝑉))) = ((𝐻 · 𝐼) − (𝑈 · 𝑉)))
4124, 39, 403eqtrrd 2770 . . 3 (𝜑 → ((𝐻 · 𝐼) − (𝑈 · 𝑉)) = (((𝐻𝑈) · (𝐼𝑉)) + (((𝐻𝑈) · 𝑉) + (𝑈 · (𝐼𝑉)))))
422, 4jca 511 . . . . . . . . 9 (𝜑 → (𝐻 ∈ ℝ ∧ 𝑈 ∈ ℝ))
43 resubcl 11493 . . . . . . . . 9 ((𝐻 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝐻𝑈) ∈ ℝ)
4442, 43syl 17 . . . . . . . 8 (𝜑 → (𝐻𝑈) ∈ ℝ)
457, 9jca 511 . . . . . . . . 9 (𝜑 → (𝐼 ∈ ℝ ∧ 𝑉 ∈ ℝ))
46 resubcl 11493 . . . . . . . . 9 ((𝐼 ∈ ℝ ∧ 𝑉 ∈ ℝ) → (𝐼𝑉) ∈ ℝ)
4745, 46syl 17 . . . . . . . 8 (𝜑 → (𝐼𝑉) ∈ ℝ)
4844, 47jca 511 . . . . . . 7 (𝜑 → ((𝐻𝑈) ∈ ℝ ∧ (𝐼𝑉) ∈ ℝ))
49 remulcl 11160 . . . . . . 7 (((𝐻𝑈) ∈ ℝ ∧ (𝐼𝑉) ∈ ℝ) → ((𝐻𝑈) · (𝐼𝑉)) ∈ ℝ)
5048, 49syl 17 . . . . . 6 (𝜑 → ((𝐻𝑈) · (𝐼𝑉)) ∈ ℝ)
5144, 9jca 511 . . . . . . . . 9 (𝜑 → ((𝐻𝑈) ∈ ℝ ∧ 𝑉 ∈ ℝ))
52 remulcl 11160 . . . . . . . . 9 (((𝐻𝑈) ∈ ℝ ∧ 𝑉 ∈ ℝ) → ((𝐻𝑈) · 𝑉) ∈ ℝ)
5351, 52syl 17 . . . . . . . 8 (𝜑 → ((𝐻𝑈) · 𝑉) ∈ ℝ)
544, 47jca 511 . . . . . . . . 9 (𝜑 → (𝑈 ∈ ℝ ∧ (𝐼𝑉) ∈ ℝ))
55 remulcl 11160 . . . . . . . . 9 ((𝑈 ∈ ℝ ∧ (𝐼𝑉) ∈ ℝ) → (𝑈 · (𝐼𝑉)) ∈ ℝ)
5654, 55syl 17 . . . . . . . 8 (𝜑 → (𝑈 · (𝐼𝑉)) ∈ ℝ)
5753, 56jca 511 . . . . . . 7 (𝜑 → (((𝐻𝑈) · 𝑉) ∈ ℝ ∧ (𝑈 · (𝐼𝑉)) ∈ ℝ))
58 readdcl 11158 . . . . . . 7 ((((𝐻𝑈) · 𝑉) ∈ ℝ ∧ (𝑈 · (𝐼𝑉)) ∈ ℝ) → (((𝐻𝑈) · 𝑉) + (𝑈 · (𝐼𝑉))) ∈ ℝ)
5957, 58syl 17 . . . . . 6 (𝜑 → (((𝐻𝑈) · 𝑉) + (𝑈 · (𝐼𝑉))) ∈ ℝ)
6050, 59jca 511 . . . . 5 (𝜑 → (((𝐻𝑈) · (𝐼𝑉)) ∈ ℝ ∧ (((𝐻𝑈) · 𝑉) + (𝑈 · (𝐼𝑉))) ∈ ℝ))
61 readdcl 11158 . . . . 5 ((((𝐻𝑈) · (𝐼𝑉)) ∈ ℝ ∧ (((𝐻𝑈) · 𝑉) + (𝑈 · (𝐼𝑉))) ∈ ℝ) → (((𝐻𝑈) · (𝐼𝑉)) + (((𝐻𝑈) · 𝑉) + (𝑈 · (𝐼𝑉)))) ∈ ℝ)
6260, 61syl 17 . . . 4 (𝜑 → (((𝐻𝑈) · (𝐼𝑉)) + (((𝐻𝑈) · 𝑉) + (𝑈 · (𝐼𝑉)))) ∈ ℝ)
63 smfmullem1.y . . . . . . . . . 10 𝑌 = if(1 ≤ 𝑋, 1, 𝑋)
6463a1i 11 . . . . . . . . 9 (𝜑𝑌 = if(1 ≤ 𝑋, 1, 𝑋))
65 1rp 12962 . . . . . . . . . . 11 1 ∈ ℝ+
6665a1i 11 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ+)
67 smfmullem1.x . . . . . . . . . . . 12 𝑋 = ((𝐴 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑈) + (abs‘𝑉))))
6867a1i 11 . . . . . . . . . . 11 (𝜑𝑋 = ((𝐴 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑈) + (abs‘𝑉)))))
69 smfmullem1.l . . . . . . . . . . . . 13 (𝜑 → (𝑈 · 𝑉) < 𝐴)
704, 9remulcld 11211 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 · 𝑉) ∈ ℝ)
71 smfmullem1.a . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℝ)
72 difrp 12998 . . . . . . . . . . . . . 14 (((𝑈 · 𝑉) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑈 · 𝑉) < 𝐴 ↔ (𝐴 − (𝑈 · 𝑉)) ∈ ℝ+))
7370, 71, 72syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((𝑈 · 𝑉) < 𝐴 ↔ (𝐴 − (𝑈 · 𝑉)) ∈ ℝ+))
7469, 73mpbid 232 . . . . . . . . . . . 12 (𝜑 → (𝐴 − (𝑈 · 𝑉)) ∈ ℝ+)
75 1red 11182 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
765abscld 15412 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘𝑈) ∈ ℝ)
7710abscld 15412 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘𝑉) ∈ ℝ)
7876, 77readdcld 11210 . . . . . . . . . . . . . 14 (𝜑 → ((abs‘𝑈) + (abs‘𝑉)) ∈ ℝ)
7975, 78readdcld 11210 . . . . . . . . . . . . 13 (𝜑 → (1 + ((abs‘𝑈) + (abs‘𝑉))) ∈ ℝ)
80 0re 11183 . . . . . . . . . . . . . . 15 0 ∈ ℝ
8180a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℝ)
8266rpgt0d 13005 . . . . . . . . . . . . . 14 (𝜑 → 0 < 1)
835absge0d 15420 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ (abs‘𝑈))
8410absge0d 15420 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ≤ (abs‘𝑉))
8576, 77addge01d 11773 . . . . . . . . . . . . . . . . 17 (𝜑 → (0 ≤ (abs‘𝑉) ↔ (abs‘𝑈) ≤ ((abs‘𝑈) + (abs‘𝑉))))
8684, 85mpbid 232 . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘𝑈) ≤ ((abs‘𝑈) + (abs‘𝑉)))
8781, 76, 78, 83, 86letrd 11338 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ ((abs‘𝑈) + (abs‘𝑉)))
8875, 78addge01d 11773 . . . . . . . . . . . . . . 15 (𝜑 → (0 ≤ ((abs‘𝑈) + (abs‘𝑉)) ↔ 1 ≤ (1 + ((abs‘𝑈) + (abs‘𝑉)))))
8987, 88mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ (1 + ((abs‘𝑈) + (abs‘𝑉))))
9081, 75, 79, 82, 89ltletrd 11341 . . . . . . . . . . . . 13 (𝜑 → 0 < (1 + ((abs‘𝑈) + (abs‘𝑉))))
9179, 90elrpd 12999 . . . . . . . . . . . 12 (𝜑 → (1 + ((abs‘𝑈) + (abs‘𝑉))) ∈ ℝ+)
9274, 91rpdivcld 13019 . . . . . . . . . . 11 (𝜑 → ((𝐴 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑈) + (abs‘𝑉)))) ∈ ℝ+)
9368, 92eqeltrd 2829 . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ+)
9466, 93ifcld 4538 . . . . . . . . 9 (𝜑 → if(1 ≤ 𝑋, 1, 𝑋) ∈ ℝ+)
9564, 94eqeltrd 2829 . . . . . . . 8 (𝜑𝑌 ∈ ℝ+)
9695rpred 13002 . . . . . . 7 (𝜑𝑌 ∈ ℝ)
97 resqcl 14096 . . . . . . 7 (𝑌 ∈ ℝ → (𝑌↑2) ∈ ℝ)
9896, 97syl 17 . . . . . 6 (𝜑 → (𝑌↑2) ∈ ℝ)
9996, 77remulcld 11211 . . . . . . . 8 (𝜑 → (𝑌 · (abs‘𝑉)) ∈ ℝ)
10096, 76remulcld 11211 . . . . . . . 8 (𝜑 → (𝑌 · (abs‘𝑈)) ∈ ℝ)
10199, 100jca 511 . . . . . . 7 (𝜑 → ((𝑌 · (abs‘𝑉)) ∈ ℝ ∧ (𝑌 · (abs‘𝑈)) ∈ ℝ))
102 readdcl 11158 . . . . . . 7 (((𝑌 · (abs‘𝑉)) ∈ ℝ ∧ (𝑌 · (abs‘𝑈)) ∈ ℝ) → ((𝑌 · (abs‘𝑉)) + (𝑌 · (abs‘𝑈))) ∈ ℝ)
103101, 102syl 17 . . . . . 6 (𝜑 → ((𝑌 · (abs‘𝑉)) + (𝑌 · (abs‘𝑈))) ∈ ℝ)
10498, 103jca 511 . . . . 5 (𝜑 → ((𝑌↑2) ∈ ℝ ∧ ((𝑌 · (abs‘𝑉)) + (𝑌 · (abs‘𝑈))) ∈ ℝ))
105 readdcl 11158 . . . . 5 (((𝑌↑2) ∈ ℝ ∧ ((𝑌 · (abs‘𝑉)) + (𝑌 · (abs‘𝑈))) ∈ ℝ) → ((𝑌↑2) + ((𝑌 · (abs‘𝑉)) + (𝑌 · (abs‘𝑈)))) ∈ ℝ)
106104, 105syl 17 . . . 4 (𝜑 → ((𝑌↑2) + ((𝑌 · (abs‘𝑉)) + (𝑌 · (abs‘𝑈)))) ∈ ℝ)
10771, 70resubcld 11613 . . . 4 (𝜑 → (𝐴 − (𝑈 · 𝑉)) ∈ ℝ)
10896resqcld 14097 . . . . 5 (𝜑 → (𝑌↑2) ∈ ℝ)
10999, 100readdcld 11210 . . . . 5 (𝜑 → ((𝑌 · (abs‘𝑉)) + (𝑌 · (abs‘𝑈))) ∈ ℝ)
11011, 36eqeltrd 2829 . . . . . . . 8 (𝜑 → ((𝐻𝑈) · (𝐼𝑉)) ∈ ℂ)
111110abscld 15412 . . . . . . 7 (𝜑 → (abs‘((𝐻𝑈) · (𝐼𝑉))) ∈ ℝ)
11296, 96remulcld 11211 . . . . . . 7 (𝜑 → (𝑌 · 𝑌) ∈ ℝ)
11350leabsd 15388 . . . . . . 7 (𝜑 → ((𝐻𝑈) · (𝐼𝑉)) ≤ (abs‘((𝐻𝑈) · (𝐼𝑉))))
11444recnd 11209 . . . . . . . . 9 (𝜑 → (𝐻𝑈) ∈ ℂ)
11547recnd 11209 . . . . . . . . 9 (𝜑 → (𝐼𝑉) ∈ ℂ)
116114, 115absmuld 15430 . . . . . . . 8 (𝜑 → (abs‘((𝐻𝑈) · (𝐼𝑉))) = ((abs‘(𝐻𝑈)) · (abs‘(𝐼𝑉))))
117114abscld 15412 . . . . . . . . 9 (𝜑 → (abs‘(𝐻𝑈)) ∈ ℝ)
118115abscld 15412 . . . . . . . . 9 (𝜑 → (abs‘(𝐼𝑉)) ∈ ℝ)
119114absge0d 15420 . . . . . . . . 9 (𝜑 → 0 ≤ (abs‘(𝐻𝑈)))
1204, 96resubcld 11613 . . . . . . . . . . . 12 (𝜑 → (𝑈𝑌) ∈ ℝ)
121 smfmullem1.p . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ((𝑈𝑌)(,)𝑈))
122121elioored 45554 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℝ)
123120rexrd 11231 . . . . . . . . . . . . 13 (𝜑 → (𝑈𝑌) ∈ ℝ*)
1244rexrd 11231 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ ℝ*)
125 ioogtlb 45500 . . . . . . . . . . . . 13 (((𝑈𝑌) ∈ ℝ*𝑈 ∈ ℝ*𝑃 ∈ ((𝑈𝑌)(,)𝑈)) → (𝑈𝑌) < 𝑃)
126123, 124, 121, 125syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (𝑈𝑌) < 𝑃)
127122rexrd 11231 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℝ*)
128 smfmullem1.r . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ (𝑈(,)(𝑈 + 𝑌)))
129128elioored 45554 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ ℝ)
130129rexrd 11231 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℝ*)
131 ioogtlb 45500 . . . . . . . . . . . . 13 ((𝑃 ∈ ℝ*𝑅 ∈ ℝ*𝐻 ∈ (𝑃(,)𝑅)) → 𝑃 < 𝐻)
132127, 130, 1, 131syl3anc 1373 . . . . . . . . . . . 12 (𝜑𝑃 < 𝐻)
133120, 122, 2, 126, 132lttrd 11342 . . . . . . . . . . 11 (𝜑 → (𝑈𝑌) < 𝐻)
1344, 96readdcld 11210 . . . . . . . . . . . 12 (𝜑 → (𝑈 + 𝑌) ∈ ℝ)
135 iooltub 45515 . . . . . . . . . . . . 13 ((𝑃 ∈ ℝ*𝑅 ∈ ℝ*𝐻 ∈ (𝑃(,)𝑅)) → 𝐻 < 𝑅)
136127, 130, 1, 135syl3anc 1373 . . . . . . . . . . . 12 (𝜑𝐻 < 𝑅)
137134rexrd 11231 . . . . . . . . . . . . 13 (𝜑 → (𝑈 + 𝑌) ∈ ℝ*)
138 iooltub 45515 . . . . . . . . . . . . 13 ((𝑈 ∈ ℝ* ∧ (𝑈 + 𝑌) ∈ ℝ*𝑅 ∈ (𝑈(,)(𝑈 + 𝑌))) → 𝑅 < (𝑈 + 𝑌))
139124, 137, 128, 138syl3anc 1373 . . . . . . . . . . . 12 (𝜑𝑅 < (𝑈 + 𝑌))
1402, 129, 134, 136, 139lttrd 11342 . . . . . . . . . . 11 (𝜑𝐻 < (𝑈 + 𝑌))
141133, 140jca 511 . . . . . . . . . 10 (𝜑 → ((𝑈𝑌) < 𝐻𝐻 < (𝑈 + 𝑌)))
1422, 4, 96absdifltd 15409 . . . . . . . . . 10 (𝜑 → ((abs‘(𝐻𝑈)) < 𝑌 ↔ ((𝑈𝑌) < 𝐻𝐻 < (𝑈 + 𝑌))))
143141, 142mpbird 257 . . . . . . . . 9 (𝜑 → (abs‘(𝐻𝑈)) < 𝑌)
144115absge0d 15420 . . . . . . . . 9 (𝜑 → 0 ≤ (abs‘(𝐼𝑉)))
1459, 96resubcld 11613 . . . . . . . . . . . 12 (𝜑 → (𝑉𝑌) ∈ ℝ)
146 smfmullem1.s . . . . . . . . . . . . 13 (𝜑𝑆 ∈ ((𝑉𝑌)(,)𝑉))
147146elioored 45554 . . . . . . . . . . . 12 (𝜑𝑆 ∈ ℝ)
148145rexrd 11231 . . . . . . . . . . . . 13 (𝜑 → (𝑉𝑌) ∈ ℝ*)
1499rexrd 11231 . . . . . . . . . . . . 13 (𝜑𝑉 ∈ ℝ*)
150148, 149, 146ioogtlbd 45555 . . . . . . . . . . . 12 (𝜑 → (𝑉𝑌) < 𝑆)
151147rexrd 11231 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ ℝ*)
152 smfmullem1.z . . . . . . . . . . . . . . 15 (𝜑𝑍 ∈ (𝑉(,)(𝑉 + 𝑌)))
153152elioored 45554 . . . . . . . . . . . . . 14 (𝜑𝑍 ∈ ℝ)
154153rexrd 11231 . . . . . . . . . . . . 13 (𝜑𝑍 ∈ ℝ*)
155151, 154, 6ioogtlbd 45555 . . . . . . . . . . . 12 (𝜑𝑆 < 𝐼)
156145, 147, 7, 150, 155lttrd 11342 . . . . . . . . . . 11 (𝜑 → (𝑉𝑌) < 𝐼)
1579, 96readdcld 11210 . . . . . . . . . . . 12 (𝜑 → (𝑉 + 𝑌) ∈ ℝ)
158151, 154, 6iooltubd 45549 . . . . . . . . . . . 12 (𝜑𝐼 < 𝑍)
159157rexrd 11231 . . . . . . . . . . . . 13 (𝜑 → (𝑉 + 𝑌) ∈ ℝ*)
160149, 159, 152iooltubd 45549 . . . . . . . . . . . 12 (𝜑𝑍 < (𝑉 + 𝑌))
1617, 153, 157, 158, 160lttrd 11342 . . . . . . . . . . 11 (𝜑𝐼 < (𝑉 + 𝑌))
162156, 161jca 511 . . . . . . . . . 10 (𝜑 → ((𝑉𝑌) < 𝐼𝐼 < (𝑉 + 𝑌)))
1637, 9, 96absdifltd 15409 . . . . . . . . . 10 (𝜑 → ((abs‘(𝐼𝑉)) < 𝑌 ↔ ((𝑉𝑌) < 𝐼𝐼 < (𝑉 + 𝑌))))
164162, 163mpbird 257 . . . . . . . . 9 (𝜑 → (abs‘(𝐼𝑉)) < 𝑌)
165117, 96, 118, 96, 119, 143, 144, 164ltmul12ad 12131 . . . . . . . 8 (𝜑 → ((abs‘(𝐻𝑈)) · (abs‘(𝐼𝑉))) < (𝑌 · 𝑌))
166116, 165eqbrtrd 5132 . . . . . . 7 (𝜑 → (abs‘((𝐻𝑈) · (𝐼𝑉))) < (𝑌 · 𝑌))
16750, 111, 112, 113, 166lelttrd 11339 . . . . . 6 (𝜑 → ((𝐻𝑈) · (𝐼𝑉)) < (𝑌 · 𝑌))
16896recnd 11209 . . . . . . . 8 (𝜑𝑌 ∈ ℂ)
169168sqvald 14115 . . . . . . 7 (𝜑 → (𝑌↑2) = (𝑌 · 𝑌))
170169eqcomd 2736 . . . . . 6 (𝜑 → (𝑌 · 𝑌) = (𝑌↑2))
171167, 170breqtrd 5136 . . . . 5 (𝜑 → ((𝐻𝑈) · (𝐼𝑉)) < (𝑌↑2))
17253recnd 11209 . . . . . . . 8 (𝜑 → ((𝐻𝑈) · 𝑉) ∈ ℂ)
173172abscld 15412 . . . . . . 7 (𝜑 → (abs‘((𝐻𝑈) · 𝑉)) ∈ ℝ)
17453leabsd 15388 . . . . . . 7 (𝜑 → ((𝐻𝑈) · 𝑉) ≤ (abs‘((𝐻𝑈) · 𝑉)))
175114, 10absmuld 15430 . . . . . . . 8 (𝜑 → (abs‘((𝐻𝑈) · 𝑉)) = ((abs‘(𝐻𝑈)) · (abs‘𝑉)))
176117, 96, 143ltled 11329 . . . . . . . . 9 (𝜑 → (abs‘(𝐻𝑈)) ≤ 𝑌)
177117, 96, 77, 84, 176lemul1ad 12129 . . . . . . . 8 (𝜑 → ((abs‘(𝐻𝑈)) · (abs‘𝑉)) ≤ (𝑌 · (abs‘𝑉)))
178175, 177eqbrtrd 5132 . . . . . . 7 (𝜑 → (abs‘((𝐻𝑈) · 𝑉)) ≤ (𝑌 · (abs‘𝑉)))
17953, 173, 99, 174, 178letrd 11338 . . . . . 6 (𝜑 → ((𝐻𝑈) · 𝑉) ≤ (𝑌 · (abs‘𝑉)))
18056recnd 11209 . . . . . . . 8 (𝜑 → (𝑈 · (𝐼𝑉)) ∈ ℂ)
181180abscld 15412 . . . . . . 7 (𝜑 → (abs‘(𝑈 · (𝐼𝑉))) ∈ ℝ)
18256leabsd 15388 . . . . . . 7 (𝜑 → (𝑈 · (𝐼𝑉)) ≤ (abs‘(𝑈 · (𝐼𝑉))))
1835, 115absmuld 15430 . . . . . . . . 9 (𝜑 → (abs‘(𝑈 · (𝐼𝑉))) = ((abs‘𝑈) · (abs‘(𝐼𝑉))))
18476recnd 11209 . . . . . . . . . 10 (𝜑 → (abs‘𝑈) ∈ ℂ)
185118recnd 11209 . . . . . . . . . 10 (𝜑 → (abs‘(𝐼𝑉)) ∈ ℂ)
186184, 185mulcomd 11202 . . . . . . . . 9 (𝜑 → ((abs‘𝑈) · (abs‘(𝐼𝑉))) = ((abs‘(𝐼𝑉)) · (abs‘𝑈)))
187183, 186eqtrd 2765 . . . . . . . 8 (𝜑 → (abs‘(𝑈 · (𝐼𝑉))) = ((abs‘(𝐼𝑉)) · (abs‘𝑈)))
188118, 96, 164ltled 11329 . . . . . . . . 9 (𝜑 → (abs‘(𝐼𝑉)) ≤ 𝑌)
189118, 96, 76, 83, 188lemul1ad 12129 . . . . . . . 8 (𝜑 → ((abs‘(𝐼𝑉)) · (abs‘𝑈)) ≤ (𝑌 · (abs‘𝑈)))
190187, 189eqbrtrd 5132 . . . . . . 7 (𝜑 → (abs‘(𝑈 · (𝐼𝑉))) ≤ (𝑌 · (abs‘𝑈)))
19156, 181, 100, 182, 190letrd 11338 . . . . . 6 (𝜑 → (𝑈 · (𝐼𝑉)) ≤ (𝑌 · (abs‘𝑈)))
19253, 56, 99, 100, 179, 191le2addd 11804 . . . . 5 (𝜑 → (((𝐻𝑈) · 𝑉) + (𝑈 · (𝐼𝑉))) ≤ ((𝑌 · (abs‘𝑉)) + (𝑌 · (abs‘𝑈))))
19350, 59, 108, 109, 171, 192ltleaddd 11806 . . . 4 (𝜑 → (((𝐻𝑈) · (𝐼𝑉)) + (((𝐻𝑈) · 𝑉) + (𝑈 · (𝐼𝑉)))) < ((𝑌↑2) + ((𝑌 · (abs‘𝑉)) + (𝑌 · (abs‘𝑈)))))
19496, 103readdcld 11210 . . . . 5 (𝜑 → (𝑌 + ((𝑌 · (abs‘𝑉)) + (𝑌 · (abs‘𝑈)))) ∈ ℝ)
19581, 117, 96, 119, 176letrd 11338 . . . . . . . 8 (𝜑 → 0 ≤ 𝑌)
19693rpred 13002 . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
197 min1 13156 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 𝑋 ∈ ℝ) → if(1 ≤ 𝑋, 1, 𝑋) ≤ 1)
19875, 196, 197syl2anc 584 . . . . . . . . 9 (𝜑 → if(1 ≤ 𝑋, 1, 𝑋) ≤ 1)
19963, 198eqbrtrid 5145 . . . . . . . 8 (𝜑𝑌 ≤ 1)
20081, 75, 96, 195, 199eliccd 45509 . . . . . . 7 (𝜑𝑌 ∈ (0[,]1))
20196sqrlearg 45558 . . . . . . 7 (𝜑 → ((𝑌↑2) ≤ 𝑌𝑌 ∈ (0[,]1)))
202200, 201mpbird 257 . . . . . 6 (𝜑 → (𝑌↑2) ≤ 𝑌)
20398, 96, 103, 202leadd1dd 11799 . . . . 5 (𝜑 → ((𝑌↑2) + ((𝑌 · (abs‘𝑉)) + (𝑌 · (abs‘𝑈)))) ≤ (𝑌 + ((𝑌 · (abs‘𝑉)) + (𝑌 · (abs‘𝑈)))))
204 1cnd 11176 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
20577recnd 11209 . . . . . . . . 9 (𝜑 → (abs‘𝑉) ∈ ℂ)
206205, 184addcld 11200 . . . . . . . 8 (𝜑 → ((abs‘𝑉) + (abs‘𝑈)) ∈ ℂ)
207168, 204, 206adddid 11205 . . . . . . 7 (𝜑 → (𝑌 · (1 + ((abs‘𝑉) + (abs‘𝑈)))) = ((𝑌 · 1) + (𝑌 · ((abs‘𝑉) + (abs‘𝑈)))))
208168mulridd 11198 . . . . . . . 8 (𝜑 → (𝑌 · 1) = 𝑌)
209168, 205, 184adddid 11205 . . . . . . . 8 (𝜑 → (𝑌 · ((abs‘𝑉) + (abs‘𝑈))) = ((𝑌 · (abs‘𝑉)) + (𝑌 · (abs‘𝑈))))
210208, 209oveq12d 7408 . . . . . . 7 (𝜑 → ((𝑌 · 1) + (𝑌 · ((abs‘𝑉) + (abs‘𝑈)))) = (𝑌 + ((𝑌 · (abs‘𝑉)) + (𝑌 · (abs‘𝑈)))))
211207, 210eqtr2d 2766 . . . . . 6 (𝜑 → (𝑌 + ((𝑌 · (abs‘𝑉)) + (𝑌 · (abs‘𝑈)))) = (𝑌 · (1 + ((abs‘𝑉) + (abs‘𝑈)))))
21277, 76readdcld 11210 . . . . . . . . 9 (𝜑 → ((abs‘𝑉) + (abs‘𝑈)) ∈ ℝ)
21375, 212readdcld 11210 . . . . . . . 8 (𝜑 → (1 + ((abs‘𝑉) + (abs‘𝑈))) ∈ ℝ)
21477, 76addge01d 11773 . . . . . . . . . . . . 13 (𝜑 → (0 ≤ (abs‘𝑈) ↔ (abs‘𝑉) ≤ ((abs‘𝑉) + (abs‘𝑈))))
21583, 214mpbid 232 . . . . . . . . . . . 12 (𝜑 → (abs‘𝑉) ≤ ((abs‘𝑉) + (abs‘𝑈)))
21681, 77, 212, 84, 215letrd 11338 . . . . . . . . . . 11 (𝜑 → 0 ≤ ((abs‘𝑉) + (abs‘𝑈)))
21775, 212addge01d 11773 . . . . . . . . . . 11 (𝜑 → (0 ≤ ((abs‘𝑉) + (abs‘𝑈)) ↔ 1 ≤ (1 + ((abs‘𝑉) + (abs‘𝑈)))))
218216, 217mpbid 232 . . . . . . . . . 10 (𝜑 → 1 ≤ (1 + ((abs‘𝑉) + (abs‘𝑈))))
21981, 75, 213, 82, 218ltletrd 11341 . . . . . . . . 9 (𝜑 → 0 < (1 + ((abs‘𝑉) + (abs‘𝑈))))
22081, 213, 219ltled 11329 . . . . . . . 8 (𝜑 → 0 ≤ (1 + ((abs‘𝑉) + (abs‘𝑈))))
221 min2 13157 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 𝑋 ∈ ℝ) → if(1 ≤ 𝑋, 1, 𝑋) ≤ 𝑋)
22275, 196, 221syl2anc 584 . . . . . . . . 9 (𝜑 → if(1 ≤ 𝑋, 1, 𝑋) ≤ 𝑋)
22364, 222eqbrtrd 5132 . . . . . . . 8 (𝜑𝑌𝑋)
22496, 196, 213, 220, 223lemul1ad 12129 . . . . . . 7 (𝜑 → (𝑌 · (1 + ((abs‘𝑉) + (abs‘𝑈)))) ≤ (𝑋 · (1 + ((abs‘𝑉) + (abs‘𝑈)))))
22568oveq1d 7405 . . . . . . . 8 (𝜑 → (𝑋 · (1 + ((abs‘𝑉) + (abs‘𝑈)))) = (((𝐴 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑈) + (abs‘𝑉)))) · (1 + ((abs‘𝑉) + (abs‘𝑈)))))
226184, 205addcomd 11383 . . . . . . . . . . 11 (𝜑 → ((abs‘𝑈) + (abs‘𝑉)) = ((abs‘𝑉) + (abs‘𝑈)))
227226oveq2d 7406 . . . . . . . . . 10 (𝜑 → (1 + ((abs‘𝑈) + (abs‘𝑉))) = (1 + ((abs‘𝑉) + (abs‘𝑈))))
228227oveq2d 7406 . . . . . . . . 9 (𝜑 → ((𝐴 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑈) + (abs‘𝑉)))) = ((𝐴 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑉) + (abs‘𝑈)))))
229228oveq1d 7405 . . . . . . . 8 (𝜑 → (((𝐴 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑈) + (abs‘𝑉)))) · (1 + ((abs‘𝑉) + (abs‘𝑈)))) = (((𝐴 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑉) + (abs‘𝑈)))) · (1 + ((abs‘𝑉) + (abs‘𝑈)))))
230107recnd 11209 . . . . . . . . 9 (𝜑 → (𝐴 − (𝑈 · 𝑉)) ∈ ℂ)
231204, 206addcld 11200 . . . . . . . . 9 (𝜑 → (1 + ((abs‘𝑉) + (abs‘𝑈))) ∈ ℂ)
23281, 219gtned 11316 . . . . . . . . 9 (𝜑 → (1 + ((abs‘𝑉) + (abs‘𝑈))) ≠ 0)
233230, 231, 232divcan1d 11966 . . . . . . . 8 (𝜑 → (((𝐴 − (𝑈 · 𝑉)) / (1 + ((abs‘𝑉) + (abs‘𝑈)))) · (1 + ((abs‘𝑉) + (abs‘𝑈)))) = (𝐴 − (𝑈 · 𝑉)))
234225, 229, 2333eqtrd 2769 . . . . . . 7 (𝜑 → (𝑋 · (1 + ((abs‘𝑉) + (abs‘𝑈)))) = (𝐴 − (𝑈 · 𝑉)))
235224, 234breqtrd 5136 . . . . . 6 (𝜑 → (𝑌 · (1 + ((abs‘𝑉) + (abs‘𝑈)))) ≤ (𝐴 − (𝑈 · 𝑉)))
236211, 235eqbrtrd 5132 . . . . 5 (𝜑 → (𝑌 + ((𝑌 · (abs‘𝑉)) + (𝑌 · (abs‘𝑈)))) ≤ (𝐴 − (𝑈 · 𝑉)))
237106, 194, 107, 203, 236letrd 11338 . . . 4 (𝜑 → ((𝑌↑2) + ((𝑌 · (abs‘𝑉)) + (𝑌 · (abs‘𝑈)))) ≤ (𝐴 − (𝑈 · 𝑉)))
23862, 106, 107, 193, 237ltletrd 11341 . . 3 (𝜑 → (((𝐻𝑈) · (𝐼𝑉)) + (((𝐻𝑈) · 𝑉) + (𝑈 · (𝐼𝑉)))) < (𝐴 − (𝑈 · 𝑉)))
23941, 238eqbrtrd 5132 . 2 (𝜑 → ((𝐻 · 𝐼) − (𝑈 · 𝑉)) < (𝐴 − (𝑈 · 𝑉)))
2402, 7remulcld 11211 . . 3 (𝜑 → (𝐻 · 𝐼) ∈ ℝ)
241240, 71, 70ltsub1d 11794 . 2 (𝜑 → ((𝐻 · 𝐼) < 𝐴 ↔ ((𝐻 · 𝐼) − (𝑈 · 𝑉)) < (𝐴 − (𝑈 · 𝑉))))
242239, 241mpbird 257 1 (𝜑 → (𝐻 · 𝐼) < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  ifcif 4491   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  *cxr 11214   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  2c2 12248  +crp 12958  (,)cioo 13313  [,]cicc 13316  cexp 14033  abscabs 15207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ioo 13317  df-icc 13320  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209
This theorem is referenced by:  smfmullem2  46797
  Copyright terms: Public domain W3C validator