MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lemul2ad Structured version   Visualization version   GIF version

Theorem lemul2ad 12123
Description: Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
ltp1d.1 (𝜑𝐴 ∈ ℝ)
divgt0d.2 (𝜑𝐵 ∈ ℝ)
lemul1ad.3 (𝜑𝐶 ∈ ℝ)
lemul1ad.4 (𝜑 → 0 ≤ 𝐶)
lemul1ad.5 (𝜑𝐴𝐵)
Assertion
Ref Expression
lemul2ad (𝜑 → (𝐶 · 𝐴) ≤ (𝐶 · 𝐵))

Proof of Theorem lemul2ad
StepHypRef Expression
1 ltp1d.1 . 2 (𝜑𝐴 ∈ ℝ)
2 divgt0d.2 . 2 (𝜑𝐵 ∈ ℝ)
3 lemul1ad.3 . . 3 (𝜑𝐶 ∈ ℝ)
4 lemul1ad.4 . . 3 (𝜑 → 0 ≤ 𝐶)
53, 4jca 511 . 2 (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
6 lemul1ad.5 . 2 (𝜑𝐴𝐵)
7 lemul2a 12037 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐶 · 𝐴) ≤ (𝐶 · 𝐵))
81, 2, 5, 6, 7syl31anc 1375 1 (𝜑 → (𝐶 · 𝐴) ≤ (𝐶 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109   class class class wbr 5107  (class class class)co 7387  cr 11067  0cc0 11068   · cmul 11073  cle 11209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408
This theorem is referenced by:  flmulnn0  13789  leexp2r  14139  fprodle  15962  efcllem  16043  2expltfac  17063  nlmvscnlem2  24573  ipcnlem2  25144  dveflem  25883  dvfsumlem2  25933  dvfsumlem2OLD  25934  plyeq0lem  26115  radcnvlem1  26322  pserulm  26331  abelthlem7  26348  abscxpbnd  26663  lgamgulmlem3  26941  ftalem1  26983  ftalem5  26987  chpub  27131  vmadivsum  27393  dchrisum0lem1a  27397  dchrisumlem2  27401  dchrisum0re  27424  vmalogdivsum2  27449  2vmadivsumlem  27451  selbergb  27460  selberg2b  27463  chpdifbndlem1  27464  selberg3lem1  27468  selberg4lem1  27471  pntrlog2bndlem1  27488  pntrlog2bndlem2  27489  pntrlog2bndlem4  27491  pntrlog2bndlem5  27492  pntrlog2bndlem6  27494  ostth2lem2  27545  axpaschlem  28867  nexple  32769  oexpled  32772  wrdt2ind  32875  hgt750lem  34642  hgt750lemb  34647  resconn  35233  knoppcnlem4  36484  unbdqndv2lem2  36498  knoppndvlem11  36510  knoppndvlem14  36513  knoppndvlem18  36517  knoppndvlem19  36518  iblmulc2nc  37679  aks4d1p1p2  42058  aks4d1p1p7  42062  aks6d1c7lem1  42168  sqrlearg  45551  fmul01  45578  fmul01lt1lem1  45582  sumnnodd  45628  ioodvbdlimc1lem2  45930  ioodvbdlimc2lem  45932  stoweidlem1  45999  wallispi  46068  wallispi2lem1  46069  wallispi2  46071  stirlinglem12  46083  fourierdlem30  46135  fourierdlem39  46144  fourierdlem47  46151  fourierdlem68  46172  fourierdlem73  46177  fourierdlem87  46191  fouriersw  46229  etransclem23  46255  hoidmvlelem1  46593  hoidmvlelem2  46594  hoidmvlelem4  46596
  Copyright terms: Public domain W3C validator