| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rightssno | Structured version Visualization version GIF version | ||
| Description: The right set of a surreal number is a subset of the surreals. (Contributed by Scott Fenton, 9-Oct-2024.) |
| Ref | Expression |
|---|---|
| rightssno | ⊢ ( R ‘𝐴) ⊆ No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rightssold 27821 | . 2 ⊢ ( R ‘𝐴) ⊆ ( O ‘( bday ‘𝐴)) | |
| 2 | oldssno 27803 | . 2 ⊢ ( O ‘( bday ‘𝐴)) ⊆ No | |
| 3 | 1, 2 | sstri 3966 | 1 ⊢ ( R ‘𝐴) ⊆ No |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3924 ‘cfv 6527 No csur 27587 bday cbday 27589 O cold 27785 R cright 27788 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4881 df-int 4920 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-1o 8474 df-2o 8475 df-no 27590 df-slt 27591 df-bday 27592 df-sslt 27729 df-scut 27731 df-made 27789 df-old 27790 df-right 27793 |
| This theorem is referenced by: cofcutr 27861 cofcutrtime 27864 lrrecpred 27880 addsproplem2 27906 sleadd1 27925 addsuniflem 27937 addsbdaylem 27952 addsbday 27953 negsproplem2 27964 negsproplem5 27967 negsproplem6 27968 negsid 27976 negsunif 27990 mulsrid 28042 mulsproplem5 28049 mulsproplem6 28050 mulsproplem7 28051 mulsproplem8 28052 mulscom 28068 mulsuniflem 28078 addsdilem3 28082 addsdilem4 28083 mulsasslem3 28094 precsexlem8 28141 precsexlem9 28142 precsexlem11 28144 |
| Copyright terms: Public domain | W3C validator |