| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > add32d | Structured version Visualization version GIF version | ||
| Description: Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| addd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| add32d | ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | add32 11353 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵)) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7353 ℂcc 11026 + caddc 11031 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 |
| This theorem is referenced by: nppcan 11404 muladd 11570 fladdz 13747 zesq 14151 relexpaddnn 14976 abstri 15256 iseraltlem3 15609 sadadd2lem 16388 pythagtriplem1 16746 pythagtriplem12 16756 vdwlem2 16912 vdwlem6 16916 vdwlem8 16918 prmgaplem8 16988 tcphcphlem1 25151 uniioombllem5 25504 heron 26764 dcubic1 26771 lgamcvg2 26981 mulog2sumlem1 27461 chpdifbndlem1 27480 selberg34r 27498 pntlemr 27529 brbtwn2 28868 axpasch 28904 crctcshwlkn0lem4 29776 clwwisshclwwslemlem 29975 constrrtcclem 33700 subfacval2 35159 lcmineqlem18 42019 sticksstones22 42141 sqrtcval 43614 fourierdlem19 46108 fourierdlem26 46115 carageniuncllem2 46504 cnapbmcpd 47280 opeoALTV 47669 |
| Copyright terms: Public domain | W3C validator |