![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > add32d | Structured version Visualization version GIF version |
Description: Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
addd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
add32d | ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | addd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | addd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | add32 11469 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵)) | |
5 | 1, 2, 3, 4 | syl3anc 1368 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 (class class class)co 7419 ℂcc 11143 + caddc 11148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11287 df-mnf 11288 df-ltxr 11290 |
This theorem is referenced by: nppcan 11519 muladd 11683 fladdz 13831 zesq 14229 relexpaddnn 15039 abstri 15318 iseraltlem3 15671 sadadd2lem 16442 pythagtriplem1 16793 pythagtriplem12 16803 vdwlem2 16959 vdwlem6 16963 vdwlem8 16965 prmgaplem8 17035 tcphcphlem1 25212 uniioombllem5 25565 heron 26820 dcubic1 26827 lgamcvg2 27037 mulog2sumlem1 27517 chpdifbndlem1 27536 selberg34r 27554 pntlemr 27585 brbtwn2 28793 axpasch 28829 crctcshwlkn0lem4 29701 clwwisshclwwslemlem 29900 subfacval2 34930 lcmineqlem18 41651 sticksstones22 41773 sqrtcval 43215 fourierdlem19 45654 fourierdlem26 45661 carageniuncllem2 46050 cnapbmcpd 46815 opeoALTV 47163 |
Copyright terms: Public domain | W3C validator |