MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  add32d Structured version   Visualization version   GIF version

Theorem add32d 11472
Description: Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
addd.1 (𝜑𝐴 ∈ ℂ)
addd.2 (𝜑𝐵 ∈ ℂ)
addd.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
add32d (𝜑 → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵))

Proof of Theorem add32d
StepHypRef Expression
1 addd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 addd.2 . 2 (𝜑𝐵 ∈ ℂ)
3 addd.3 . 2 (𝜑𝐶 ∈ ℂ)
4 add32 11463 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵))
51, 2, 3, 4syl3anc 1369 1 (𝜑 → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  (class class class)co 7420  cc 11137   + caddc 11142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-ltxr 11284
This theorem is referenced by:  nppcan  11513  muladd  11677  fladdz  13823  zesq  14221  relexpaddnn  15031  abstri  15310  iseraltlem3  15663  sadadd2lem  16434  pythagtriplem1  16785  pythagtriplem12  16795  vdwlem2  16951  vdwlem6  16955  vdwlem8  16957  prmgaplem8  17027  tcphcphlem1  25176  uniioombllem5  25529  heron  26783  dcubic1  26790  lgamcvg2  27000  mulog2sumlem1  27480  chpdifbndlem1  27499  selberg34r  27517  pntlemr  27548  brbtwn2  28729  axpasch  28765  crctcshwlkn0lem4  29637  clwwisshclwwslemlem  29836  subfacval2  34797  lcmineqlem18  41517  sticksstones22  41640  sqrtcval  43071  fourierdlem19  45514  fourierdlem26  45521  carageniuncllem2  45910  cnapbmcpd  46675  opeoALTV  47024
  Copyright terms: Public domain W3C validator