MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqabsadd Structured version   Visualization version   GIF version

Theorem sqabsadd 14637
Description: Square of absolute value of sum. Proposition 10-3.7(g) of [Gleason] p. 133. (Contributed by NM, 21-Jan-2007.)
Assertion
Ref Expression
sqabsadd ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 + 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · (ℜ‘(𝐴 · (∗‘𝐵))))))

Proof of Theorem sqabsadd
StepHypRef Expression
1 cjadd 14495 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 + 𝐵)) = ((∗‘𝐴) + (∗‘𝐵)))
21oveq2d 7165 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) · (∗‘(𝐴 + 𝐵))) = ((𝐴 + 𝐵) · ((∗‘𝐴) + (∗‘𝐵))))
3 cjcl 14459 . . . . 5 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
4 cjcl 14459 . . . . 5 (𝐵 ∈ ℂ → (∗‘𝐵) ∈ ℂ)
53, 4anim12i 614 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) ∈ ℂ ∧ (∗‘𝐵) ∈ ℂ))
6 muladd 11065 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((∗‘𝐴) ∈ ℂ ∧ (∗‘𝐵) ∈ ℂ)) → ((𝐴 + 𝐵) · ((∗‘𝐴) + (∗‘𝐵))) = (((𝐴 · (∗‘𝐴)) + ((∗‘𝐵) · 𝐵)) + ((𝐴 · (∗‘𝐵)) + ((∗‘𝐴) · 𝐵))))
75, 6mpdan 685 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) · ((∗‘𝐴) + (∗‘𝐵))) = (((𝐴 · (∗‘𝐴)) + ((∗‘𝐵) · 𝐵)) + ((𝐴 · (∗‘𝐵)) + ((∗‘𝐴) · 𝐵))))
82, 7eqtrd 2855 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) · (∗‘(𝐴 + 𝐵))) = (((𝐴 · (∗‘𝐴)) + ((∗‘𝐵) · 𝐵)) + ((𝐴 · (∗‘𝐵)) + ((∗‘𝐴) · 𝐵))))
9 addcl 10612 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
10 absvalsq 14635 . . 3 ((𝐴 + 𝐵) ∈ ℂ → ((abs‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) · (∗‘(𝐴 + 𝐵))))
119, 10syl 17 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) · (∗‘(𝐴 + 𝐵))))
12 absvalsq 14635 . . . 4 (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
13 absvalsq 14635 . . . . 5 (𝐵 ∈ ℂ → ((abs‘𝐵)↑2) = (𝐵 · (∗‘𝐵)))
14 mulcom 10616 . . . . . 6 ((𝐵 ∈ ℂ ∧ (∗‘𝐵) ∈ ℂ) → (𝐵 · (∗‘𝐵)) = ((∗‘𝐵) · 𝐵))
154, 14mpdan 685 . . . . 5 (𝐵 ∈ ℂ → (𝐵 · (∗‘𝐵)) = ((∗‘𝐵) · 𝐵))
1613, 15eqtrd 2855 . . . 4 (𝐵 ∈ ℂ → ((abs‘𝐵)↑2) = ((∗‘𝐵) · 𝐵))
1712, 16oveqan12d 7168 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) = ((𝐴 · (∗‘𝐴)) + ((∗‘𝐵) · 𝐵)))
18 mulcl 10614 . . . . . 6 ((𝐴 ∈ ℂ ∧ (∗‘𝐵) ∈ ℂ) → (𝐴 · (∗‘𝐵)) ∈ ℂ)
194, 18sylan2 594 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (∗‘𝐵)) ∈ ℂ)
2019addcjd 14566 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (∗‘𝐵)) + (∗‘(𝐴 · (∗‘𝐵)))) = (2 · (ℜ‘(𝐴 · (∗‘𝐵)))))
21 cjmul 14496 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (∗‘𝐵) ∈ ℂ) → (∗‘(𝐴 · (∗‘𝐵))) = ((∗‘𝐴) · (∗‘(∗‘𝐵))))
224, 21sylan2 594 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 · (∗‘𝐵))) = ((∗‘𝐴) · (∗‘(∗‘𝐵))))
23 cjcj 14494 . . . . . . . 8 (𝐵 ∈ ℂ → (∗‘(∗‘𝐵)) = 𝐵)
2423adantl 484 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(∗‘𝐵)) = 𝐵)
2524oveq2d 7165 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) · (∗‘(∗‘𝐵))) = ((∗‘𝐴) · 𝐵))
2622, 25eqtrd 2855 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 · (∗‘𝐵))) = ((∗‘𝐴) · 𝐵))
2726oveq2d 7165 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (∗‘𝐵)) + (∗‘(𝐴 · (∗‘𝐵)))) = ((𝐴 · (∗‘𝐵)) + ((∗‘𝐴) · 𝐵)))
2820, 27eqtr3d 2857 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (ℜ‘(𝐴 · (∗‘𝐵)))) = ((𝐴 · (∗‘𝐵)) + ((∗‘𝐴) · 𝐵)))
2917, 28oveq12d 7167 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · (ℜ‘(𝐴 · (∗‘𝐵))))) = (((𝐴 · (∗‘𝐴)) + ((∗‘𝐵) · 𝐵)) + ((𝐴 · (∗‘𝐵)) + ((∗‘𝐴) · 𝐵))))
308, 11, 293eqtr4d 2865 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 + 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · (ℜ‘(𝐴 · (∗‘𝐵))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  cfv 6348  (class class class)co 7149  cc 10528   + caddc 10533   · cmul 10535  2c2 11686  cexp 13426  ccj 14450  cre 14451  abscabs 14588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-er 8282  df-en 8503  df-dom 8504  df-sdom 8505  df-sup 8899  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11632  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-seq 13367  df-exp 13427  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590
This theorem is referenced by:  abstri  14685  sqabsaddi  14760  cncph  28594
  Copyright terms: Public domain W3C validator