![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqabsadd | Structured version Visualization version GIF version |
Description: Square of absolute value of sum. Proposition 10-3.7(g) of [Gleason] p. 133. (Contributed by NM, 21-Jan-2007.) |
Ref | Expression |
---|---|
sqabsadd | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 + 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · (ℜ‘(𝐴 · (∗‘𝐵)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cjadd 15095 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 + 𝐵)) = ((∗‘𝐴) + (∗‘𝐵))) | |
2 | 1 | oveq2d 7428 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) · (∗‘(𝐴 + 𝐵))) = ((𝐴 + 𝐵) · ((∗‘𝐴) + (∗‘𝐵)))) |
3 | cjcl 15059 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | |
4 | cjcl 15059 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (∗‘𝐵) ∈ ℂ) | |
5 | 3, 4 | anim12i 612 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) ∈ ℂ ∧ (∗‘𝐵) ∈ ℂ)) |
6 | muladd 11653 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((∗‘𝐴) ∈ ℂ ∧ (∗‘𝐵) ∈ ℂ)) → ((𝐴 + 𝐵) · ((∗‘𝐴) + (∗‘𝐵))) = (((𝐴 · (∗‘𝐴)) + ((∗‘𝐵) · 𝐵)) + ((𝐴 · (∗‘𝐵)) + ((∗‘𝐴) · 𝐵)))) | |
7 | 5, 6 | mpdan 684 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) · ((∗‘𝐴) + (∗‘𝐵))) = (((𝐴 · (∗‘𝐴)) + ((∗‘𝐵) · 𝐵)) + ((𝐴 · (∗‘𝐵)) + ((∗‘𝐴) · 𝐵)))) |
8 | 2, 7 | eqtrd 2771 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) · (∗‘(𝐴 + 𝐵))) = (((𝐴 · (∗‘𝐴)) + ((∗‘𝐵) · 𝐵)) + ((𝐴 · (∗‘𝐵)) + ((∗‘𝐴) · 𝐵)))) |
9 | addcl 11198 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
10 | absvalsq 15234 | . . 3 ⊢ ((𝐴 + 𝐵) ∈ ℂ → ((abs‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) · (∗‘(𝐴 + 𝐵)))) | |
11 | 9, 10 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) · (∗‘(𝐴 + 𝐵)))) |
12 | absvalsq 15234 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴))) | |
13 | absvalsq 15234 | . . . . 5 ⊢ (𝐵 ∈ ℂ → ((abs‘𝐵)↑2) = (𝐵 · (∗‘𝐵))) | |
14 | mulcom 11202 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ (∗‘𝐵) ∈ ℂ) → (𝐵 · (∗‘𝐵)) = ((∗‘𝐵) · 𝐵)) | |
15 | 4, 14 | mpdan 684 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (𝐵 · (∗‘𝐵)) = ((∗‘𝐵) · 𝐵)) |
16 | 13, 15 | eqtrd 2771 | . . . 4 ⊢ (𝐵 ∈ ℂ → ((abs‘𝐵)↑2) = ((∗‘𝐵) · 𝐵)) |
17 | 12, 16 | oveqan12d 7431 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) = ((𝐴 · (∗‘𝐴)) + ((∗‘𝐵) · 𝐵))) |
18 | mulcl 11200 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (∗‘𝐵) ∈ ℂ) → (𝐴 · (∗‘𝐵)) ∈ ℂ) | |
19 | 4, 18 | sylan2 592 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (∗‘𝐵)) ∈ ℂ) |
20 | 19 | addcjd 15166 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (∗‘𝐵)) + (∗‘(𝐴 · (∗‘𝐵)))) = (2 · (ℜ‘(𝐴 · (∗‘𝐵))))) |
21 | cjmul 15096 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (∗‘𝐵) ∈ ℂ) → (∗‘(𝐴 · (∗‘𝐵))) = ((∗‘𝐴) · (∗‘(∗‘𝐵)))) | |
22 | 4, 21 | sylan2 592 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 · (∗‘𝐵))) = ((∗‘𝐴) · (∗‘(∗‘𝐵)))) |
23 | cjcj 15094 | . . . . . . . 8 ⊢ (𝐵 ∈ ℂ → (∗‘(∗‘𝐵)) = 𝐵) | |
24 | 23 | adantl 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(∗‘𝐵)) = 𝐵) |
25 | 24 | oveq2d 7428 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) · (∗‘(∗‘𝐵))) = ((∗‘𝐴) · 𝐵)) |
26 | 22, 25 | eqtrd 2771 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 · (∗‘𝐵))) = ((∗‘𝐴) · 𝐵)) |
27 | 26 | oveq2d 7428 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (∗‘𝐵)) + (∗‘(𝐴 · (∗‘𝐵)))) = ((𝐴 · (∗‘𝐵)) + ((∗‘𝐴) · 𝐵))) |
28 | 20, 27 | eqtr3d 2773 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (ℜ‘(𝐴 · (∗‘𝐵)))) = ((𝐴 · (∗‘𝐵)) + ((∗‘𝐴) · 𝐵))) |
29 | 17, 28 | oveq12d 7430 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · (ℜ‘(𝐴 · (∗‘𝐵))))) = (((𝐴 · (∗‘𝐴)) + ((∗‘𝐵) · 𝐵)) + ((𝐴 · (∗‘𝐵)) + ((∗‘𝐴) · 𝐵)))) |
30 | 8, 11, 29 | 3eqtr4d 2781 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 + 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · (ℜ‘(𝐴 · (∗‘𝐵)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ‘cfv 6543 (class class class)co 7412 ℂcc 11114 + caddc 11119 · cmul 11121 2c2 12274 ↑cexp 14034 ∗ccj 15050 ℜcre 15051 abscabs 15188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-sup 9443 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-n0 12480 df-z 12566 df-uz 12830 df-rp 12982 df-seq 13974 df-exp 14035 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 |
This theorem is referenced by: abstri 15284 sqabsaddi 15359 cncph 30505 |
Copyright terms: Public domain | W3C validator |