MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqabsadd Structured version   Visualization version   GIF version

Theorem sqabsadd 15318
Description: Square of absolute value of sum. Proposition 10-3.7(g) of [Gleason] p. 133. (Contributed by NM, 21-Jan-2007.)
Assertion
Ref Expression
sqabsadd ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 + 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · (ℜ‘(𝐴 · (∗‘𝐵))))))

Proof of Theorem sqabsadd
StepHypRef Expression
1 cjadd 15177 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 + 𝐵)) = ((∗‘𝐴) + (∗‘𝐵)))
21oveq2d 7447 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) · (∗‘(𝐴 + 𝐵))) = ((𝐴 + 𝐵) · ((∗‘𝐴) + (∗‘𝐵))))
3 cjcl 15141 . . . . 5 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
4 cjcl 15141 . . . . 5 (𝐵 ∈ ℂ → (∗‘𝐵) ∈ ℂ)
53, 4anim12i 613 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) ∈ ℂ ∧ (∗‘𝐵) ∈ ℂ))
6 muladd 11693 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((∗‘𝐴) ∈ ℂ ∧ (∗‘𝐵) ∈ ℂ)) → ((𝐴 + 𝐵) · ((∗‘𝐴) + (∗‘𝐵))) = (((𝐴 · (∗‘𝐴)) + ((∗‘𝐵) · 𝐵)) + ((𝐴 · (∗‘𝐵)) + ((∗‘𝐴) · 𝐵))))
75, 6mpdan 687 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) · ((∗‘𝐴) + (∗‘𝐵))) = (((𝐴 · (∗‘𝐴)) + ((∗‘𝐵) · 𝐵)) + ((𝐴 · (∗‘𝐵)) + ((∗‘𝐴) · 𝐵))))
82, 7eqtrd 2775 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) · (∗‘(𝐴 + 𝐵))) = (((𝐴 · (∗‘𝐴)) + ((∗‘𝐵) · 𝐵)) + ((𝐴 · (∗‘𝐵)) + ((∗‘𝐴) · 𝐵))))
9 addcl 11235 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
10 absvalsq 15316 . . 3 ((𝐴 + 𝐵) ∈ ℂ → ((abs‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) · (∗‘(𝐴 + 𝐵))))
119, 10syl 17 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) · (∗‘(𝐴 + 𝐵))))
12 absvalsq 15316 . . . 4 (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
13 absvalsq 15316 . . . . 5 (𝐵 ∈ ℂ → ((abs‘𝐵)↑2) = (𝐵 · (∗‘𝐵)))
14 mulcom 11239 . . . . . 6 ((𝐵 ∈ ℂ ∧ (∗‘𝐵) ∈ ℂ) → (𝐵 · (∗‘𝐵)) = ((∗‘𝐵) · 𝐵))
154, 14mpdan 687 . . . . 5 (𝐵 ∈ ℂ → (𝐵 · (∗‘𝐵)) = ((∗‘𝐵) · 𝐵))
1613, 15eqtrd 2775 . . . 4 (𝐵 ∈ ℂ → ((abs‘𝐵)↑2) = ((∗‘𝐵) · 𝐵))
1712, 16oveqan12d 7450 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) = ((𝐴 · (∗‘𝐴)) + ((∗‘𝐵) · 𝐵)))
18 mulcl 11237 . . . . . 6 ((𝐴 ∈ ℂ ∧ (∗‘𝐵) ∈ ℂ) → (𝐴 · (∗‘𝐵)) ∈ ℂ)
194, 18sylan2 593 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (∗‘𝐵)) ∈ ℂ)
2019addcjd 15248 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (∗‘𝐵)) + (∗‘(𝐴 · (∗‘𝐵)))) = (2 · (ℜ‘(𝐴 · (∗‘𝐵)))))
21 cjmul 15178 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (∗‘𝐵) ∈ ℂ) → (∗‘(𝐴 · (∗‘𝐵))) = ((∗‘𝐴) · (∗‘(∗‘𝐵))))
224, 21sylan2 593 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 · (∗‘𝐵))) = ((∗‘𝐴) · (∗‘(∗‘𝐵))))
23 cjcj 15176 . . . . . . . 8 (𝐵 ∈ ℂ → (∗‘(∗‘𝐵)) = 𝐵)
2423adantl 481 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(∗‘𝐵)) = 𝐵)
2524oveq2d 7447 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) · (∗‘(∗‘𝐵))) = ((∗‘𝐴) · 𝐵))
2622, 25eqtrd 2775 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 · (∗‘𝐵))) = ((∗‘𝐴) · 𝐵))
2726oveq2d 7447 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (∗‘𝐵)) + (∗‘(𝐴 · (∗‘𝐵)))) = ((𝐴 · (∗‘𝐵)) + ((∗‘𝐴) · 𝐵)))
2820, 27eqtr3d 2777 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (ℜ‘(𝐴 · (∗‘𝐵)))) = ((𝐴 · (∗‘𝐵)) + ((∗‘𝐴) · 𝐵)))
2917, 28oveq12d 7449 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · (ℜ‘(𝐴 · (∗‘𝐵))))) = (((𝐴 · (∗‘𝐴)) + ((∗‘𝐵) · 𝐵)) + ((𝐴 · (∗‘𝐵)) + ((∗‘𝐴) · 𝐵))))
308, 11, 293eqtr4d 2785 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 + 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · (ℜ‘(𝐴 · (∗‘𝐵))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  cc 11151   + caddc 11156   · cmul 11158  2c2 12319  cexp 14099  ccj 15132  cre 15133  abscabs 15270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272
This theorem is referenced by:  abstri  15366  sqabsaddi  15441  cncph  30848
  Copyright terms: Public domain W3C validator